Patents by Inventor David L. RODRIGUEZ

David L. RODRIGUEZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10296672
    Abstract: Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: May 21, 2019
    Inventors: David L. Rodriguez, Peter Sturdza
  • Patent number: 9348956
    Abstract: A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: May 24, 2016
    Assignee: AERION CORPORATION
    Inventors: David L. Rodriguez, Peter Sturdza
  • Publication number: 20150370933
    Abstract: Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
    Type: Application
    Filed: December 24, 2014
    Publication date: December 24, 2015
    Inventors: David L. RODRIGUEZ, Peter STURDZA
  • Patent number: 8935140
    Abstract: Fluid-flow simulation over a computer-generated surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the surface are identified. A surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. At least one boundary-layer fluid property for each identified surface mesh polygon is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: January 13, 2015
    Assignee: Aerion Corporation
    Inventors: David L. Rodriguez, Peter Sturdza
  • Publication number: 20130246024
    Abstract: A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: AERION CORPORATION
    Inventors: David L. RODRIGUEZ, Peter STURDZA
  • Publication number: 20130246027
    Abstract: Fluid-flow simulation over a computer-generated surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the surface are identified. A surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. At least one boundary-layer fluid property for each identified surface mesh polygon is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: AERION CORPORATION
    Inventors: David L. RODRIGUEZ, Peter STURDZA
  • Patent number: 8457939
    Abstract: Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: June 4, 2013
    Assignee: Aerion Corporation
    Inventors: David L. Rodriguez, Peter Sturdza
  • Patent number: 8437990
    Abstract: A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 7, 2013
    Assignee: Aerion Corporation
    Inventors: David L. Rodriguez, Peter Sturdza
  • Publication number: 20120232860
    Abstract: A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 13, 2012
    Applicant: DESKTOP AERONAUTICS, INC.
    Inventors: David L. RODRIGUEZ, Peter STURDZA
  • Publication number: 20120173219
    Abstract: Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicant: DESKTOP AERONAUTICS, INC.
    Inventors: David L. RODRIGUEZ, Peter Sturdza