Patents by Inventor David M. Doll

David M. Doll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131581
    Abstract: A powder admixture useful for making a sintered engine part such as a valve seat insert includes a first iron-base powder and second iron-base powder wherein the first iron-base powder has a higher hardness than the second iron-base powder, the first iron-base powder including, in weight percent, 1-2% C, 10-25% Cr, 5-20% Mo, 15-25% Co, and 30-60% Fe, and the second iron-base powder including a vanadium-free tool steel powder such as a vanadium-free tool steel comprising, in weight %, 1-1.5% C, 3-15% Cr, 5-7% Mo, 3-6% W, and 60-85% Fe, the second iron-base powder further comprising vanadium carbide particles in an amount sufficient to reduce adhesive wear. The powder admixture can be sintered to form a sintered engine part optionally infiltrated with copper.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 25, 2024
    Applicant: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll
  • Publication number: 20230160031
    Abstract: An iron-based alloy includes, in weight percent, carbon from about 0.75 to about 2 percent; manganese from about 0.1 to about 1 percent; silicon from about 0.1 to about 1 percent; chromium from about 3 to about 6 percent; nickel up to about 4 percent; vanadium from about 1 to about 3 percent; molybdenum from about 4 to about 7 percent; tungsten from about 4 to about 7 percent; cobalt from about 4 to about 7 percent; boron up to about 0.1 percent; nitrogen from about 0.001 to about 0.15 percent, aluminum from about 0.001 to about 0.6 percent, copper from about 0.1 to about 1 percent, sulfur up to about 0.3 percent, phosphorus up to about 0.3 percent, up to about 5 percent total of tantalum, titanium, hafnium and zirconium; iron from about 65 to about 80 percent; and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
    Type: Application
    Filed: December 28, 2022
    Publication date: May 25, 2023
    Applicant: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M Doll
  • Patent number: 11566299
    Abstract: An iron-based alloy includes, in weight percent, carbon from about 0.75 to about 2 percent; manganese from about 0.1 to about 1 percent; silicon from about 0.1 to about 1 percent; chromium from about 3 to about 6 percent; nickel up to about 4 percent; vanadium from about 1 to about 3 percent; molybdenum from about 4 to about 7 percent; tungsten from about 4 to about 7 percent; cobalt from about 4 to about 7 percent; boron up to about 0.1 percent; nitrogen from about 0.001 to about 0.15 percent, aluminum from about 0.001 to about 0.6 percent, copper from about 0.1 to about 1 percent, sulfur up to about 0.3 percent, phosphorus up to about 0.3 percent, up to about 5 percent total of tantalum, titanium, hafnium and zirconium; iron from about 65 to about 80 percent; and incidental impurities.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 31, 2023
    Assignee: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M Doll
  • Patent number: 11525172
    Abstract: A nickel-niobium intermetallic alloy contains, in weight percent, silicon from about 1.5 to about 3.5 percent; chromium from 5 to about 15 percent; nickel from about 45 to about 75 percent; niobium from about 14 to about 30 percent; cobalt up to about 7 percent; and iron up to about 10 percent; wherein the nickel plus niobium content is about 70 to about 90 percent and the total silicon, chromium, cobalt and iron content is about 10 to about 30 percent. The alloy can have a cast microstructure of at least 95 volume percent intermetallic phases and no more than about 5 volume percent solid solution phases. The intermetallic phases can include rod-like intermetallic phases of Ni3Nb and Ni8Nb7. The microstructure can be a lamellar microstructure and/or the microstructure can have less than 5 volume percent Ni—Fe and Ni—Co rich intermetallic phases.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: December 13, 2022
    Assignee: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll
  • Publication number: 20220349487
    Abstract: A powder admixture useful for making a sintered valve seat insert includes a first iron-base powder and second iron-base powder wherein the first iron-base powder has a higher hardness than the second iron-base powder, the first iron-base powder including, in weight percent, 1-2% C, 10-25% Cr, 5-20% Mo, 15-25% Co, and 30-60 wt. % Fe, and the second iron-base powder including, in weight %, 1-1.5% C, 3-15% Cr, 5-7% Mo, 3-6% W, 1-1.7% V, and 60-85% Fe. The powder admixture can be sintered to form a sintered valve seat insert optionally infiltrated with copper.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 3, 2022
    Applicant: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll
  • Publication number: 20220243296
    Abstract: An iron-based alloy includes, in weight percent, carbon from about 0.75 to about 2 percent; manganese from about 0.1 to about 1 percent; silicon from about 0.1 to about 1 percent; chromium from about 3 to about 6 percent; nickel up to about 4 percent; vanadium from about 1 to about 3 percent; molybdenum from about 4 to about 7 percent; tungsten from about 4 to about 7 percent; cobalt from about 4 to about 7 percent; boron up to about 0.1 percent; nitrogen from about 0.001 to about 0.15 percent, aluminum from about 0.001 to about 0.6 percent, copper from about 0.1 to about 1 percent, sulfur up to about 0.3 percent, phosphorus up to about 0.3 percent, up to about 5 percent total of tantalum, titanium, hafnium and zirconium; iron from about 65 to about 80 percent; and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
    Type: Application
    Filed: February 1, 2021
    Publication date: August 4, 2022
    Applicant: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll
  • Patent number: 11155904
    Abstract: A cobalt-rich wear resistant and corrosion resistant alloy useful for parts of a combustion engine such as valve seat inserts includes, in weight % about 0.1 to about 0.8% C, about 0.1 to about 1.5% Mn, about 3 to about 5% Si, about 10 to about 20% Cr, about 5 to about 32% Fe, about 0.5 to about 4% W, about 10 to about 30% Mo, up to about 20% Ni, about 20 to about 40% Co, up to about 6% V, up to about 3% Nb, total V plus Nb of about 0.5 to about 8.5% and balance unavoidable impurities including up to 0.035% P, up to 0.015% S and up to 0.250% N.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: October 26, 2021
    Assignee: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M Doll, Heidi Ziegler Doll, Douglas W. Dooley, Daniel W. Bancroft
  • Publication number: 20210010113
    Abstract: A cobalt-rich wear resistant and corrosion resistant alloy useful for parts of a combustion engine such as valve seat inserts includes, in weight % about 0.1 to about 0.8% C, about 0.1 to about 1.5% Mn, about 3 to about 5% Si, about 10 to about 20% Cr, about 5 to about 32% Fe, about 0.5 to about 4% W, about 10 to about 30% Mo, up to about 20% Ni, about 20 to about 40% Co, up to about 6% V, up to about 3% Nb, total V plus Nb of about 0.5 to about 8.5% and balance unavoidable impurities including up to 0.035% P, up to 0.015% S and up to 0.250% N.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 14, 2021
    Applicant: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M Doll, Heidi Ziegler Doll, Douglas W. Dooley, Daniel W. Bancroft
  • Patent number: 10421116
    Abstract: A method of casting valve seat inserts comprises pouring molten metal into a gating system of a mold plate stack wherein mold plates are located between top and bottom molds wherein the gating system includes a casting header, down-sprue, horizontal sprue, up-sprues, runners, and gates in fluid communication with mold cavities configured to form the valve seat inserts. The method includes filling the mold cavities with the molten metal, and controlling solidification of the molten metal in the mold cavities by means of an outer thermal barrier which retards heat transfer in mold plate material between the mold cavities and an outer periphery of the mold plate stack. An inner thermal barrier can be used to further control solidification of the molten metal. Valve seat inserts produced using the thermal jacket molds can exhibit an improved microhardness distribution which provides improved machining and higher yield.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: September 24, 2019
    Assignee: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M Doll, Donald K Morris, Howard Delorme, Jr.
  • Publication number: 20190009327
    Abstract: A method of casting valve seat inserts comprises pouring molten metal into a gating system of a mold plate stack wherein mold plates are located between top and bottom molds wherein the gating system includes a casting header, down-sprue, horizontal sprue, up-sprues, runners, and gates in fluid communication with mold cavities configured to form the valve seat inserts. The method includes filling the mold cavities with the molten metal, and controlling solidification of the molten metal in the mold cavities by means of an outer thermal barrier which retards heat transfer in mold plate material between the mold cavities and an outer periphery of the mold plate stack. An inner thermal barrier can be sued to further control solidification of the molten metal. Valve seat inserts produced using the thermal jacket molds can exhibit an improved microhardness distribution which provides improved machining and higher yield.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 10, 2019
    Applicant: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll, Donald K. Morris, Howard Delorme, JR.
  • Patent number: 8940110
    Abstract: An iron-based corrosion resistant and wear resistant alloy includes (in weight percentage) carbon from about 1.6 to 3%, silicon from about 0.8 to 2.1%, manganese up to 1.0%, chromium from about 12.0 to 15.0%, molybdenum from about 2.0 to 4.0%, nickel from about 0.2 to 0.8%, copper up to 4.0%, boron up to 0.5%, and the balance including iron and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: January 27, 2015
    Assignee: L. E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll
  • Publication number: 20140076260
    Abstract: An iron-based corrosion resistant and wear resistant alloy includes (in weight percentage) carbon from about 1.6 to 3%, silicon from about 0.8 to 2.1%, manganese up to 1.0%, chromium from about 12.0 to 15.0%, molybdenum from about 2.0 to 4.0%, nickel from about 0.2 to 0.8%, copper up to 4.0%, boron up to 0.5%, and the balance including iron and incidental impurities. The alloy is suitable for use in elevated temperature applications such as in valve seat inserts for combustion engines.
    Type: Application
    Filed: September 15, 2012
    Publication date: March 20, 2014
    Applicant: L. E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll