Patents by Inventor David M. Thomas

David M. Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958850
    Abstract: Compounds and pharmaceutical compositions that modulate kinase activity, including mutant EGFR and mutant HER2 kinase activity, and compounds, pharmaceutical compositions, and methods of treatment of diseases and conditions associated with kinase activity, including mutant EGFR and mutant HER2 activity, are described herein.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: April 16, 2024
    Assignee: TAKEDA PHARMACEUTICAL COMPANY LIMITED
    Inventors: Wei-Sheng Huang, Yongjin Gong, Feng Li, Nicholas E. Bencivenga, David C. Dalgarno, Anna Kohlmann, William C. Shakespeare, Ranny M. Thomas, Xiaotian Zhu, Angela V. West, Willmen Youngsaye, Yun Zhang, Tianjun Zhou
  • Publication number: 20240112890
    Abstract: A faceplate of a showerhead has a bottom side that faces a plasma generation region and a top side that faces a plenum into which a process gas is supplied during operation of a substrate processing system. The faceplate includes apertures formed through the bottom side and openings formed through the top side. Each of the apertures is formed to extend through a portion of an overall thickness of the faceplate to intersect with at least one of the openings to form a corresponding flow path for process gas through the faceplate. Each of the apertures has a cross-section that has a hollow cathode discharge suppression dimension in at least one direction. Each of the openings has a cross-section that has a smallest cross-sectional dimension that is greater than the hollow cathode discharge suppression dimension.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 4, 2024
    Inventors: Michael John Selep, Patrick G. Breiling, Karl Frederick Leeser, Timothy Scott Thomas, David William Kamp, Sean M. Donnelly
  • Patent number: 11942516
    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a quantum well stack; a first gate above the quantum well stack, wherein the first gate includes a first gate metal and a first gate dielectric; and a second gate above the quantum well stack, wherein the second gate includes a second gate metal and a second gate dielectric, and the first gate is at least partially between a portion of the second gate and the quantum well stack.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Nicole K. Thomas, Ravi Pillarisetty, Kanwaljit Singh, Hubert C. George, David J. Michalak, Lester Lampert, Zachary R. Yoscovits, Roman Caudillo, Jeanette M. Roberts, James S. Clarke
  • Patent number: 11931140
    Abstract: Navigation and simulation systems and methods for minimally invasive therapy in which the navigation system imports a planning method using patient specific preoperative images. The navigation system uses intraoperative imaging during the medical procedure to update the preoperative images and provides images of tracked surgical tools along the surgical path prepared from the preoperative images.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: March 19, 2024
    Inventors: Cameron Piron, Michael Wood, Gal Sela, Joshua Richmond, Murugathas Yuwaraj, Monroe M. Thomas, Wes Hodges, Simon Alexander, David Gallop, Alex Panther, Nishanthan Shanmugaratnam, William Lau
  • Patent number: 9287002
    Abstract: A sampling circuit may include a sampling capacitance, an electronic sampling switch, and a switch controller. The electronic sampling switch may have a control input that controls whether the electronic sampling switch is in a sample state or a hold state. The electronic sampling switch may connect the sampling capacitance to an input signal while in the sample state and disconnect the sampling capacitance from the input signal while in the hold state. The switch controller may control the control input to the electronic sampling switch so as to cause the electronic sampling switch to be in the sample state during one period and the hold state during another period. While in the sample state, the switch controller may cause the impedance of the electronic sampling switch that is seen by the input signal to be substantially independent of the voltage of the input signal.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 15, 2016
    Assignee: LINEAR TECHNOLOGY CORPORATION
    Inventor: David M. Thomas
  • Publication number: 20150270013
    Abstract: A sampling circuit may include a sampling capacitance, an electronic sampling switch, and a switch controller. The electronic sampling switch may have a control input that controls whether the electronic sampling switch is in a sample state or a hold state. The electronic sampling switch may connect the sampling capacitance to an input signal while in the sample state and disconnect the sampling capacitance from the input signal while in the hold state. The switch controller may control the control input to the electronic sampling switch so as to cause the electronic sampling switch to be in the sample state during one period and the hold state during another period. While in the sample state, the switch controller may cause the impedance of the electronic sampling switch that is seen by the input signal to be substantially independent of the voltage of the input signal.
    Type: Application
    Filed: September 17, 2014
    Publication date: September 24, 2015
    Applicant: LINEAR TECHNOLOGY CORPORATION
    Inventor: David M. Thomas
  • Patent number: 8786318
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 22, 2014
    Assignee: Linear Technology Corporation
    Inventor: David M. Thomas
  • Patent number: 8723556
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: May 13, 2014
    Assignee: Linear Technology Corporation
    Inventor: David M. Thomas
  • Patent number: 8698522
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: April 15, 2014
    Assignee: Linear Technology Corporation
    Inventor: David M. Thomas
  • Patent number: 8648741
    Abstract: Circuits and methods for converting a signal from analog to digital. A random number generator provides a random number to a memory. The memory is preconfigured to include codes of predetermined digital to analog (DAC) configurations that provide the maximum amount of DAC gradient suppression. At least one Flash reference generation DAC (FRGD) has an input coupled to the memory unit and an output providing a reference voltage level for its respective Flash comparator. The Flash comparators compare the analog input signal to their respective reference voltage and provide a digital output signal based on the comparison.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: February 11, 2014
    Assignee: Linear Technology Corporation
    Inventor: David M. Thomas
  • Patent number: 8482442
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Linear Technology Corporation
    Inventor: David M. Thomas
  • Publication number: 20120313666
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventor: David M. THOMAS
  • Publication number: 20120313670
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventor: David M. THOMAS
  • Publication number: 20120313800
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventor: David M. THOMAS
  • Publication number: 20120313667
    Abstract: Circuits and methods that improve the performance of electronic sampling systems are provided. Impedances associated with sampling semiconductor switches are maintained substantially constant during sample states, at least in part, by compensating for encountered input signal variations in order to reduce or minimize signal distortion associated with sampled signals that pass through the sampling switch.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventor: David M. THOMAS
  • Publication number: 20120013389
    Abstract: In the preferred embodiment, a current source is switchable between two precisely defined output currents. A terminal of a coupling capacitor is coupled to the gate of an output MOSFET. The other terminal of the capacitor is switched between two reference voltages to toggle the MOSFET to output the selected one of the two currents. A switchable bias voltage source is coupled to the gate only during the on state of the MOSFET to set the gate voltage of the MOSFET. The current output of the current source is quickly and accurately changed. A reference MOSFET is not directly coupled to the output MOSFET, so there are no slow settling components coupled to the gate of the output MOSFET.
    Type: Application
    Filed: November 18, 2010
    Publication date: January 19, 2012
    Applicant: LINEAR TECHNOLOGY CORPORATION
    Inventors: David M. Thomas, Richard J. Reay
  • Patent number: 7907074
    Abstract: Circuits and methods that improve the performance of voltage reference driver circuits and associated analog to digital converters are provided. A voltage reference driver circuit that maintains a substantially constant output voltage when a load current is modulated by an input signal is provided. The voltage reference driver circuit synchronously decouples a voltage regulation circuit from the load circuit when modulating events such as pulses caused by the load circuit during a switching interval are generated, preventing disturbance of the regulation circuitry and keeping its output voltage substantially constant.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: March 15, 2011
    Assignee: Linear Technology Corporation
    Inventors: Alfio Zanchi, David M. Thomas, Joseph L. Sousa, Andrew J. Thomas, Jesper Steensgaard-Madsen
  • Patent number: 7683695
    Abstract: Systems and methods for reducing the magnitude of signal dependent capacitance are provided. Capacitance canceling circuitry is operative to generate cancellation capacitance in response to the magnitude of a signal, which may be the same signal that produces the undesired signal dependent capacitance, to at least partially cancel the signal dependent capacitance.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: March 23, 2010
    Assignee: Linear Technology Corporation
    Inventors: Joseph L. Sousa, David M. Thomas
  • Publication number: 20090121912
    Abstract: Circuits and methods that improve the performance of voltage reference driver circuits and associated analog to digital converters are provided. A voltage reference driver circuit that maintains a substantially constant output voltage when a load current is modulated by an input signal is provided. The voltage reference driver circuit synchronously decouples a voltage regulation circuit from the load circuit when modulating events such as pulses caused by the load circuit during a switching interval are generated, preventing disturbance of the regulation circuitry and keeping its output voltage substantially constant.
    Type: Application
    Filed: October 9, 2008
    Publication date: May 14, 2009
    Inventors: Alfio Zanchi, David M. Thomas, Joseph L. Sousa, Andrew J. Thomas, Jesper Steensgaard-Madsen
  • Patent number: RE45798
    Abstract: Circuits and methods for converting a signal from analog to digital. A random number generator provides a random number to a memory. The memory is preconfigured to include codes of predetermined digital to analog (DAC) configurations that provide the maximum amount of DAC gradient suppression. At least one Flash reference generation DAC (FRGD) has an input coupled to the memory unit and an output providing a reference voltage level for its respective Flash comparator. The Flash comparators compare the analog input signal to their respective reference voltage and provide a digital output signal based on the comparison.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: November 10, 2015
    Assignee: LINEAR TECHNOLOGY CORPORATION
    Inventors: David M. Thomas, Alfio Zanchi