Patents by Inventor David M. Valenzuela

David M. Valenzuela has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932859
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: March 19, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin L. Goshert, Lynn Macdonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Publication number: 20240052365
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 15, 2024
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Patent number: 11820997
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: November 21, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20230332185
    Abstract: Compositions and methods are provided for creating and promoting biallelic targeted modifications to genomes within cells and for producing non-human animals comprising the modified genomes. Also provided are compositions and methods for modifying a genome within a cell that is heterozygous for an allele to become homozygous for that allele. The methods make use of Cas proteins and two or more guide RNAs that target different locations within the same genomic target locus. Also provided are methods of identifying cells with modified genomes.
    Type: Application
    Filed: May 15, 2023
    Publication date: October 19, 2023
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Ka-Man Venus Lai, Wojtek Auerbach, Gustavo Droguett, Anthony Gagliardi, David M. Valenzuela, Vera Voronina, Lynn Macdonald, Andrew J. Murphy, George D. Yancopoulos
  • Patent number: 11697828
    Abstract: Compositions and methods are provided for creating and promoting biallelic targeted modifications to genomes within cells and for producing non-human animals comprising the modified genomes. Also provided are compositions and methods for modifying a genome within a cell that is heterozygous for an allele to become homozygous for that allele. The methods make use of Cas proteins and two or more guide RNAs that target different locations within the same genomic target locus. Also provided are methods of identifying cells with modified genomes.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 11, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: David Frendewey, Ka-Man Venus Lai, Wojtek Auerbach, Gustavo Droguett, Anthony Gagliardi, David M. Valenzuela, Vera Voronina, Lynn Macdonald, Andrew J. Murphy, George D. Yancopoulos
  • Publication number: 20230189771
    Abstract: Genetically modified non-human animals are provided that exhibit a functional lack of one or more IncRNAs. Methods and compositions for disrupting, deleting, and/or replacing IncRNA-encoding sequences are provided. Genetically modified mice that age prematurely are provided. Also provided are cells, tissues and embryos that are genetically modified to comprise a loss-of-function of one or more IncRNAs.
    Type: Application
    Filed: November 16, 2022
    Publication date: June 22, 2023
    Inventors: Ka-Man Venus Lai, Guochun Gong, John Rinn, David Frendewey, David M. Valenzuela
  • Patent number: 11547101
    Abstract: A non-human animal model for neurodegenerative and/or inflammatory diseases is provided, which non-human animal comprises a disruption in a C9ORF72 locus. In particular, non-human animals described herein comprise a deletion of an entire coding sequence of a C9ORF72 locus. Methods of identifying therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative (e.g., amyotrophic lateral sclerosis (ALS, also referred to as Lou Gehrig's disease) and frontotemporal dementia (FTD)), autoimmune and/or inflammatory diseases (e.g., SLE, glomerulonephritis) are also provided.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: January 10, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Amanda Atanasio, Burcin Ikiz, Guochun Gong, Michael L. Lacroix-Fralish, Ka-Man Venus Lai, David M. Valenzuela
  • Patent number: 11547100
    Abstract: Genetically modified non-human animals are provided that exhibit a functional lack of one or more lncRNAs. Methods and compositions for disrupting, deleting, and/or replacing lncRNA-encoding sequences are provided. Genetically modified mice that age prematurely are provided. Also provided are cells, tissues and embryos that are genetically modified to comprise a loss-of-function of one or more lncRNAs.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: January 10, 2023
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Ka-Man Venus Lai, Guochun Gong, John Rinn, David Frendewey, David M. Valenzuela
  • Publication number: 20210301301
    Abstract: Compositions and methods are provided for modifying a rat genomic locus of interest using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Compositions and methods for generating a genetically modified rat comprising one or more targeted genetic modifications in their germline are also provided. Compositions and methods are provided which comprise a genetically modified rat or rat cell comprising a targeted genetic modification in the rat interleukin-2 receptor gamma locus, the rat ApoE locus, the rat Rag2 locus, the rat Rag1 locus and/or the rat Rag2/Rag1 locus. The various methods and compositions provided herein allows for these modified loci to be transmitted through the germline.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 30, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffrey D. Lee, Alexander O. Mujica, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20210130846
    Abstract: Compositions and methods are provided for making rat pluripotent and totipotent cells, including rat embryonic stem (ES) cells. Compositions and methods for improving efficiency or frequency of germline transmission of genetic modifications in rats are provided. Such methods and compositions comprise an in vitro culture comprising a feeder cell layer and a population of rat ES cells or a rat ES cell line, wherein the in vitro culture conditions maintain pluripotency of the ES cell and comprises a media having mouse leukemia inhibitory factor (LIF) or an active variant or fragment thereof. Various methods of establishing such rat ES cell lines are further provided. Methods of selecting genetically modified rat ES cells are also provided, along with various methods to generate a transgenic rat from the genetically modified rat ES cells provided herein. Various kits and articles of manufacture are further provided.
    Type: Application
    Filed: December 10, 2020
    Publication date: May 6, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffrey D. Lee, Wojtek Auerbach, David Heslin, David Frendewey, Ka-Man Venus Lai, David M. Valenzuela
  • Patent number: 10988776
    Abstract: Methods of creating mutations in genomic exons by inserting introns into the genomic exons via homologous recombination. Also, methods are provided for introducing modifications into genomic exons by inserting introns into the genomic exons via homologous recombination such that a mature mRNA transcript produced from a genomic region of the genome comprising the genomic exon does not contain the modification are provided. The methods provide for a rapid method for introducing mutations and/or modifications of any type into a mammalian cell genome.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: April 27, 2021
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Aris N. Economides, David M. Valenzuela, Samuel Davis, George Yancopoulos
  • Patent number: 10975390
    Abstract: Compositions and methods are provided for modifying a rat genomic locus of interest using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Compositions and methods for generating a genetically modified rat comprising one or more targeted genetic modifications in their germline are also provided. Compositions and methods are provided which comprise a genetically modified rat or rat cell comprising a targeted genetic modification in the rat interleukin-2 receptor gamma locus, the rat ApoE locus, the rat Rag2 locus, the rat Rag1 locus and/or the rat Rag2/Rag1 locus. The various methods and compositions provided herein allows for these modified loci to be transmitted through the germline.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: April 13, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffrey D. Lee, Alexander O. Mujica, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Patent number: 10894965
    Abstract: Compositions and methods are provided for making rat pluripotent and totipotent cells, including rat embryonic stem (ES) cells. Compositions and methods for improving efficiency or frequency of germline transmission of genetic modifications in rats are provided. Such methods and compositions comprise an in vitro culture comprising a feeder cell layer and a population of rat ES cells or a rat ES cell line, wherein the in vitro culture conditions maintain pluripotency of the ES cell and comprises a media having mouse leukemia inhibitory factor (LIF) or an active variant or fragment thereof. Various methods of establishing such rat ES cell lines are further provided. Methods of selecting genetically modified rat ES cells are also provided, along with various methods to generate a transgenic rat from the genetically modified rat ES cells provided herein. Various kits and articles of manufacture are further provided.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: January 19, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffrey D. Lee, Wojtek Auerbach, David Heslin, David Frendewey, Ka-Man Venus Lai, David M. Valenzuela
  • Publication number: 20200370054
    Abstract: A non-human animal (e.g., a rodent) model for diseases associated with a C9ORF72 heterologous hexanucleotide repeat expansion sequence is provided, which non-human animal comprises a heterologous hexanucleotide repeat (GGGGCC) in an endogenous C9ORF72 locus. A non-human animal disclosed herein comprising a heterologous hexanucleotide repeat expansion sequence comprising at least one instance, e.g., repeat, of a hexanucleotide (GGGGCC) sequence may further exhibit a characteristic and/or phenotype associated with one or more neurodegenerative disorders (e.g., amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD), etc.). Methods of identifying therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative (e.g., amyotrophic lateral sclerosis (ALS, also referred to as Lou Gehrig's disease) and frontotemporal dementia (FTD)) are also provided.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 26, 2020
    Inventors: David Heslin, Roxanne Ally, Chia-Jen Siao, Ka-Man Venus Lai, David M. Valenzuela, Chunguang Guo, Michael LaCroix-Fralish, Lynn Macdonald, Aarti Sharma-Kanning, Daisuke Kajimura, Gustavo Droguett, David Frendewey, Alexander O. Mujica
  • Patent number: 10781453
    Abstract: A non-human animal (e.g., a rodent) model for diseases associated with a C9ORF72 heterologous hexanucleotide repeat expansion sequence is provided, which non-human animal comprises a heterologous hexanucleotide repeat (GGGGCC) in an endogenous C9ORF72 locus. A non-human animal disclosed herein comprising a heterologous hexanucleotide repeat expansion sequence comprising at least one instance, e.g., repeat, of a hexanucleotide (GGGGCC) sequence may further exhibit a characteristic and/or phenotype associated with one or more neurodegenerative disorders (e.g., amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD), etc.). Methods of identifying therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative (e.g., amyotrophic lateral sclerosis (ALS, also referred to as Lou Gehrig's disease) and frontotemporal dementia (FTD)) are also provided.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 22, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Heslin, Roxanne Ally, Chia-Jen Siao, Ka-Man Venus Lai, David M. Valenzuela, Aarti Sharma-Kanning, Daisuke Kajimura, Gustavo Droguett, David Frendewey, Alexander O. Mujica
  • Publication number: 20200291425
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Patent number: 10711280
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20200208161
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Application
    Filed: March 11, 2020
    Publication date: July 2, 2020
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin L. Goshert, Lynn Macdonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Patent number: 10640800
    Abstract: Provided herein is a mouse that produces hybrid antibodies containing human variable regions and mouse constant regions.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 5, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Andrew J. Murphy, George D. Yancopoulos, Margaret Karow, Lynn MacDonald, Sean Stevens, Aris N. Economides, David M. Valenzuela
  • Patent number: 10626402
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: April 21, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin L. Goshert, Lynn MacDonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy