Patents by Inventor David Myung

David Myung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100010114
    Abstract: A composition of matter comprising a water-swellable IPN or semi-IPN including a hydrophobic thermoset or thermoplastic polymer and an ionic polymer, articles made from such composition and methods of using such articles. The invention also includes a process for producing a water-swellable IPN or semi-IPN from a hydrophobic thermoset or thermoplastic polymer including the steps of placing an ionizable monomer solution in contact with a solid form of the hydrophobic thermoset or thermoplastic polymer; diffusing the ionizable monomer solution into the hydrophobic thermoset or thermoplastic polymer; and polymerizing the ionizable monomers to form a ionic polymer inside the hydrophobic thermoset or thermoplastic polymer, thereby forming the IPN or semi-IPN.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 14, 2010
    Inventors: David Myung, Michael J. Jaasma, Lampros Kourtis
  • Publication number: 20090280182
    Abstract: Interpenetrating network hydrogels are described that may be incorporated into wound dressings and/or in implants. The properties of the interpenetrating network hydrogel may be tuned to control an amount of moisture in a wound environment. The devices, methods, and kits described herein may be adapted to treat a variety of wound types at a variety of healing stages over a range of time scales. Some hydrogels may be configured to deliver one or more vulnerary agents to a wound. The interpenetrating network hydrogels may also be adapted to control a rate and/or amount of moisture uptake so that the hydrogels may be used as expandable implants to expand tissue.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 12, 2009
    Inventors: Stayce Beck, David Myung, Curtis W. Frank, Jennifer R. Cochran, Michael T. Longaker, George P. Yang, Daphne P. Ly, Shira G. Mandel
  • Publication number: 20090240337
    Abstract: A method of attaching an implant to a bone, the implant comprising a hydrated polymer comprising a lubricious hydrated surface and an attachment surface comprising accessible chemical functional groups. The method includes the steps of treating the implant or the bone with an isocyanate-containing compound; placing the attachment surface in apposition to the bone; and allowing the isocyanate-containing compound to cure to bond the implant to the bone. The invention also includes a medical implant having a hydrated polymer comprising an attachment surface comprising a thermoplastic material, the hydrated polymer having an interpenetrating polymer network with at least two polymers, the hydrated polymer having a low coefficient of friction on at least one surface.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 24, 2009
    Inventors: David Myung, Lampros Kourtis, Michael J. Jaasma
  • Publication number: 20090117166
    Abstract: A bio-mimetic or bio-implantable material based on a sequential process of coupling biomolecule layers to a polymer layer is provided. In general, the material could be based on two or more biomolecule layers starting with one of the layers covalently linked to the polymer layer via cross-linkers and the other layers sequentially and covalently linked using cross-linkers to the previously added layer. The polymer layer could be a hydrogel or an interpenetrating polymer network hydrogel. The first layer of biomolecules could be a collagen type, fibronectin, laminin, extracellular matrix protein, or any combinations thereof. The second layer of biomolecules typically is a growth factor, protein or stimulant. The cross-linkers are either water soluble or insoluble bifunctional cross-linkers or azide-active-ester crosslinkers. The material and process as taught in this invention are useful in the field of tissue engineering and wound healing.
    Type: Application
    Filed: August 15, 2008
    Publication date: May 7, 2009
    Inventors: David Myung, Stayce Beck, Jaan Noolandi, Christopher N. Ta, Jennifer R. Cochran, Curtis W. Frank
  • Publication number: 20090088846
    Abstract: An arthroplasty device is provided having an interpenetrating polymer network (IPN) hydrogel that is strain-hardened by swelling and adapted to be held in place in a joint by conforming to a bone geometry. The strain-hardened IPN hydrogel is based on two different networks: (1) a non-silicone network of preformed hydrophilic non-ionic telechelic macromonomers chemically cross-linked by polymerization of its end-groups, and (2) a non-silicone network of ionizable monomers. The second network was polymerized and chemically cross-linked in the presence of the first network and has formed physical cross-links with the first network. Within the IPN, the degree of chemical cross-linking in the second network is less than in the first network. An aqueous salt solution (neutral pH) is used to ionize and swell the second network. The swelling of the second network is constrained by the first network resulting in an increase in effective physical cross-links within the IPN.
    Type: Application
    Filed: April 17, 2008
    Publication date: April 2, 2009
    Inventors: David Myung, Lampros Kourtis, Laura Hartmann, Curtis W. Frank, Stuart B. Goodman, Dennis R. Carter
  • Publication number: 20080269370
    Abstract: A strain-hardened interpenetrating polymer network (IPN) hydrogel is provided. The interpenetrating polymer network hydrogel is based on two different networks. The first network is a non-silicone network of preformed hydrophilic non-ionic telechelic macromonomers chemically cross-linked by polymerization of its end-groups. The second network is a non-silicone network of ionizable monomers. The second network has been polymerized and chemically cross-linked in the presence of the first network and has formed physical cross-links with the first network. An aqueous salt solution having a neutral pH is used to ionize and swell the second network in the interpenetrating polymer network. The swelling of the second network is constrained by the first network, and this constraining effect results in an increase in effective physical cross-links within the interpenetrating polymer network, and, in turn, an increase its elastic modulus.
    Type: Application
    Filed: February 15, 2008
    Publication date: October 30, 2008
    Inventors: David Myung, Laura Hartman, Jean Noolandi, Christopher N. Ta, Curtis W. Frank
  • Publication number: 20080241214
    Abstract: A hydrogel-metal assembly is provided. An intervening polymer network is used to bond together a water-swollen hydrogel layer and a biocompatible surface-modified metallic layer. The hydrogel layer is a water-swollen hydrogel layer of at least two interpenetrating polymers. The surface of the biocompatible surface-modified metallic layer is surface-modified with an inorganic material. The intervening polymer network has been chemically grafted to the inorganic material of the biocompatible surface-modified metallic layer through bi-functional linker molecules. The intervening polymer network is further physically or chemically cross-linked with the polymers of the water-swollen hydrogel. The hydrogel-metal assembly can be adapted to form a medical device, medical implant, an artificial implant, an orthopedic implant, or at least as part of a joint.
    Type: Application
    Filed: February 6, 2008
    Publication date: October 2, 2008
    Inventors: David Myung, Beinn V.O. Mulr, Curtis W. Frank
  • Publication number: 20070233240
    Abstract: The present invention provides a hydrogel-based intraocular lens (IOL) implant that can covalently attach to a lens capsule on implantation into an eye. The inventive IOL has a high refractive index, high elasticity, and is of a similar size to a naturally occurring lens. In addition, the IOL can be implanted in a smaller, dehydrated state, allowing the IOL to be placed in the lens capsule with a small incision (up to about 1/10 the volume of the IOL). Exposure to fluid can then initiate rapid swelling of the dried polymer to the shape and dimensions of a natural lens, with full occupation of the lens capsule. Upon equilibrium swelling, the IOL can then make contact with the inner aspect of the lens capsule and covalently bind to it. By this attachment process, the IOL may accommodate in a manner identical to that of the natural lens.
    Type: Application
    Filed: March 16, 2007
    Publication date: October 4, 2007
    Inventors: Curtis Frank, Christopher Ta, David Myung, Jaan Noolandi, Michael Carrasco, Won-Gun Koh
  • Publication number: 20070179605
    Abstract: The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
    Type: Application
    Filed: December 13, 2006
    Publication date: August 2, 2007
    Inventors: David Myung, Christopher Ta, Curtis Frank, Won-Gun Koh, Jaan Noolandi
  • Publication number: 20070126982
    Abstract: The present invention provides interpenetrating polymer network hydrogels that have high oxygen permeability, strength, water content, and resistance to protein adsorption. The hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. The telechelic macromonomer preferably has a molecular weight of between about 575 Da and about 20,000 Da. Mixtures of molecular weights may also be used. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. The material is designed to serve as a contact lens.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 7, 2007
    Inventors: David Myung, Jaan Noolandi, Christopher Ta, Curtis Frank
  • Publication number: 20060287721
    Abstract: The present invention provides an artificial corneal implant having an optically clear central core and a porous, hydrophilic, biocompatible skirt peripheral to the central core. In one embodiment, the central core is made of an interpenetrating double network hydrogel and the skirt is made of poly(2-hydroxyethyl acrylate) (PHEA). In another embodiment, both the central core and the skirt are made of interpenetrating double network hydrogels. The artificial corneal implant may also have an interdiffusion zone in which the skirt component is interpenetrated with the core component, or vice versa. In a preferred embodiment, biomolecules are linked to the skirt, central core or both. These biomolecules may be any type of biomolecule, but are preferably biomolecules that support epithelial and/or fibroblast cell survival and growth. Preferably, the biomolecules are linked in a spatially selective manner. The present invention also provides a method of making an artificial corneal implant using photolithography.
    Type: Application
    Filed: April 20, 2006
    Publication date: December 21, 2006
    Inventors: David Myung, Christopher Ta, Nabeel Farooqui, Curtis Frank, Won-Gun Koh, Jungmin Ko, Jaan Noolandi, Michael Carrasco
  • Publication number: 20060083773
    Abstract: A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
    Type: Application
    Filed: October 4, 2005
    Publication date: April 20, 2006
    Inventors: David Myung, Jaan Noolandi, Alan Smith, Curtis Frank, Christopher Ta, Yin Hu, Won-Gun Koh, Michael Carrasco