Patents by Inventor David P. Bour

David P. Bour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7276390
    Abstract: An InAsP active region for a long wavelength light emitting device and a method for growing the same are disclosed. In one embodiment, the method comprises placing a substrate in an organometallic vapor phase epitaxy (OMVPE) reactor, the substrate for supporting growth of an indium arsenide phosphide (InAsP) film, forming a quantum well layer of InAsP, and forming a barrier layer adjacent the quantum well layer, where the quantum well layer and the barrier layer are formed at a temperature of less than 520 degrees C. Forming the quantum well layer and the barrier layer at a temperature of less than 520 degrees C. results in fewer dislocations by suppressing relaxation of the layers. A long wavelength active region including InAsP quantum well layers and InGaP barrier layers is also disclosed.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: October 2, 2007
    Assignee: Avago Technologies General IP Pte Ltd
    Inventors: David P. Bour, Michael R. T. Tan, William H. Perez
  • Patent number: 7274719
    Abstract: A buried heterostructure quantum cascade laser structure uses reverse biased junction to achieve current blocking. Doping and ridge width of the structure may be adjusted to provide effective mode discrimination.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: September 25, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: David P. Bour, Scott W Corzine
  • Patent number: 7215848
    Abstract: An optical isolator for coupling light from a first waveguide to a second waveguide is disclosed. The optical isolator utilizes a resonator coupled to the first and second optical waveguides. The resonator has a resonance at ? for light traveling from the first optical waveguide to the second optical waveguide; however, the resonator does not have a resonance at ? for light traveling from the second waveguide to the first waveguide. The resonator can use a layer of ferromagnetic material in an applied magnetic field. The magnetic field within the ferromagnetic material varies in strength and/or direction over the layer of ferromagnetic material. The magnetic field can be generated by an external magnetic field that varies over the layer of ferromagnetic material. Alternatively, the resonator can include a layer of ferromagnetic metal that overlies a portion of the layer of ferromagnetic material and a constant external magnetic field.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: May 8, 2007
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Michael R. T. Tan, William Trutna, David P. Bour, Michael H. Leary
  • Patent number: 7184640
    Abstract: The device is an optoelectronic device or transparent waveguide device that comprises a growth surface, a growth mask, an optical waveguide core mesa and a cladding layer. The growth mask is located on the semiconductor surface and defines an elongate growth window. The optical waveguide core mesa is located in the growth window and has a trapezoidal cross-sectional shape. The cladding layer covers the optical waveguide core mesa and extends over at least part of the growth mask. Such devices are fabricated by providing a wafer comprising a growth surface, growing an optical waveguide core mesa on the growth surface by micro-selective area growth at a first growth temperature and covering the optical waveguide core mesa with cladding material at a second growth temperature, lower than the first growth temperature.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: February 27, 2007
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: David P. Bour, Scott W. Corzine
  • Patent number: 7177061
    Abstract: An optical modulator comprises a first waveguide layer and a barrier layer, and a quantum well layer sandwiched between the first waveguide layer and the barrier layer, where the quantum well layer has a graded composition that varies the bandgap energy of the quantum well layer between a minimum bandgap energy and the bandgap energy of at least one of the first waveguide layer and the barrier layer.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: February 13, 2007
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: David P. Bour, Jintian Zhu
  • Patent number: 7142342
    Abstract: The electroabsorption modulator comprises a p-i-n junction structure that includes an active layer, a p-type cladding layer and an n-type cladding layer with the active layer sandwiched between the cladding layers. The electroabsorption modulator additionally comprises a quantum well structure located within the active layer. The p-type cladding layer comprises a layer of heavily-doped low-diffusivity p-type semiconductor material located adjacent the active layer that reduces the extension of the depletion region into the p-type cladding layer when a reverse bias is applied to the electroabsorption modulator. The reduced extension increases the strength of the electric field applied to the quantum well structure by a given reverse bias voltage. The increased field strength increases the extinction ratio of the electroabsorption modulator.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: November 28, 2006
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: David P. Bour, Ashish Tandon, Scott W. Corzine, Chaokun Lin
  • Patent number: 7123637
    Abstract: A nitride-based laser diode structure utilizing a single GaN:Mg waveguide/cladding layer, in place of separate GaN:Mg waveguide and AlGaN:Mg cladding layers used in conventional nitride-based laser diode structures. When formed using an optimal thickness, the GaN:Mg layer produces an optical confinement that is comparable to or better than conventional structures. A thin AlGaN tunnel barrier layer is provided between the multiple quantum well and a lower portion of the GaN:Mg waveguide layer, which suppresses electron leakage without any significant decrease in optical confinement. A split-metal electrode is formed on the GaN:Mg upper waveguide structure to avoid absorption losses in the upper electrode metal. A pair of AlGaN:Si current blocking layer sections are located below the split-metal electrode sections, and separated by a gap located over the active region of the multiple quantum well.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: October 17, 2006
    Assignee: Xerox Corporation
    Inventors: Michael A. Kneissl, David P. Bour, Linda T. Romano, Christian G. Van de Walle
  • Patent number: 7033938
    Abstract: The active region of a long-wavelength light emitting device is made by providing an organometallic vapor phase epitaxy (OMVPE) reactor, placing a substrate wafer capable of supporting growth of indium gallium arsenide nitride in the reactor, supplying a Group III–V precursor mixture comprising an arsenic precursor, a nitrogen precursor, a gallium precursor, an indium precursor and a carrier gas to the reactor and pressurizing the reactor to a sub-atmospheric elevated growth pressure no higher than that at which a layer of indium gallium arsenide layer having a nitrogen fraction commensurate with light emission at a wavelength longer than 1.2 ?m is deposited over the substrate wafer.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: April 25, 2006
    Inventors: David P. Bour, Tetsuya Takeuchi, Ashish Tandon, Ying-Lan Chang, Michael R. T. Tan, Scott W. Corzine
  • Patent number: 6967981
    Abstract: A nitride based resonant cavity semiconductor structure has highly reflective mirrors on opposite sides of the active layer. These highly reflective mirrors can be distributed Bragg reflectors or metal terminated layer stacks of dielectric materials. The nitride based resonant cavity semiconductor structure can be vertical cavity surface emitting laser (VCSEL), a light emitting diode (LED), or a photodetector (PD), or a combination of these devices.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: November 22, 2005
    Assignee: Xerox Corporation
    Inventors: Christopher L. Chua, Michael A. Kneissl, David P. Bour
  • Patent number: 6955933
    Abstract: A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: October 18, 2005
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: David P. Bour, Nathan F. Gardner, Werner K. Goetz, Stephen A. Stockman, Tetsuya Takeuchi, Ghulam Hasnain, Christopher P. Kocot, Mark R. Hueschen
  • Patent number: 6931044
    Abstract: A method and apparatus is provided for improving the temperature performance of GaAsSb materials utilizing an AlGaInP confinement structure. An active region containing a GaAsSb quantum well layer and (In)GaAs barrier layers is sandwiched between two AlGaInP confinement layers. AlGaInP confinement structures provide sufficient electron confinement, thereby improving the stability of the threshold current with respect to increasing temperature for GaAsSb/GaAs heterostructures.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: August 16, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: David P. Bour, Michael R. T. Tan, Ying-Lan Chang
  • Patent number: 6878970
    Abstract: Light-emitting devices are described. One example of a light-emitting device includes a first barrier layer and a second barrier layer, and a quantum well layer located between the first and second barrier layers. The first and second barrier layers are composed of gallium arsenide, and the quantum well layer is composed of indium gallium arsenide nitride. A first layer is located between the quantum well layer and the first barrier layer. The first layer has a bandgap energy between that of the first barrier layer and that of the quantum well layer. Another example of a light-emitting device includes a quantum well and a carrier capture element adjacent the quantum well. The carrier capture element increases the effective carrier capture cross-section of the quantum well.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: April 12, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: David P. Bour, Michael H. Leary, Ying-Lan Chang, Yoon-Kyu Song, Michael R. T. Tan, Tetsuya Takeuchi, Danielle Chamberlin
  • Patent number: 6878959
    Abstract: The group III-V semiconductor device comprises a quantum well layer, barrier layers sandwiching the quantum well layer and a region of a third semiconductor material formed by spatially-selective intermixing of atoms on the group V sublattice between the first semiconductor material of the quantum well layer and the second semiconductor material of the barrier layer. The quantum well layer is a layer of a first semiconductor material that has a band gap energy and a refractive index. The barrier layers are layers of a second semiconductor material that has a higher band gap energy and a lower refractive index than the first semiconductor material. The third semiconductor material has a band gap energy and a refractive index intermediate between the band gap energy and the refractive index, respectively, of the first semiconductor material and the second semiconductor material.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: April 12, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: David P. Bour, Ying-Lan Chang, Tetsuya Takeuchi, Danny E. Mars
  • Patent number: 6875627
    Abstract: An index-guided buried heterostructure AlGalnN laser diode provides improved mode stability and low threshold current when compared to conventional ridge waveguide structures. A short period superlattice is used to allow adequate cladding layer thickness for confinement without cracking. The intensity of the light lost due to leakage is reduced by about 2 orders of magnitude with an accompanying improvement in the far-field radiation pattern when compared to conventional structures.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: April 5, 2005
    Assignee: Xerox Corporation
    Inventors: David P. Bour, Michael A. Kneissl, Linda T. Romano
  • Publication number: 20040240025
    Abstract: The electroabsorption modulator comprises a p-i-n junction structure that includes an active layer, a p-type cladding layer and an n-type cladding layer with the active layer sandwiched between the cladding layers. The electroabsorption modulator additionally comprises a quantum well structure located within the active layer. The p-type cladding layer comprises a layer of heavily-doped low-diffusivity p-type semiconductor material located adjacent the active layer that reduces the extension of the depletion region into the p-type cladding layer when a reverse bias is applied to the electroabsorption modulator. The reduced extension increases the strength of the electric field applied to the quantum well structure by a given reverse bias voltage. The increased field strength increases the extinction ratio of the electroabsorption modulator.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 2, 2004
    Inventors: David P. Bour, Ashish Tandon, Scott W. Corzine, Chaokun Lin
  • Patent number: 6816528
    Abstract: Method and structure for nitride-based laser diode arrays on a conducting substrate are disclosed. Air-bridge structures are used to make compact laser diode arrays suitable for printer applications. The use of a channel structure architecture allows the making of surface emitting laser diode arrays.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: November 9, 2004
    Assignee: Xerox Corporation
    Inventors: Michael A. Kneissl, David P. Bour, Noble M. Johnson, Jack Walker
  • Publication number: 20040219703
    Abstract: The active region of a long-wavelength light emitting device is made by providing an organometallic vapor phase epitaxy (OMVPE) reactor, placing a substrate wafer capable of supporting growth of indium gallium arsenide nitride in the reactor, supplying a Group III-V precursor mixture comprising an arsenic precursor, a nitrogen precursor, a gallium precursor, an indium precursor and a carrier gas to the reactor and pressurizing the reactor to a sub-atmospheric elevated growth pressure no higher than that at which a layer of indium gallium arsenide layer having a nitrogen fraction commensurate with light emission at a wavelength longer than 1.2 &mgr;m is deposited over the substrate wafer.
    Type: Application
    Filed: February 23, 2004
    Publication date: November 4, 2004
    Inventors: David P. Bour, Tetsuya Takeuchi, Ashish Tandon, Ying-Lan Chang, Michael R. T. Tan, Scott W. Corzine
  • Patent number: 6813295
    Abstract: Various asymmetric InGaAsN VCSEL structures that are made using an MOCVD process are presented. Use of the asymmetric structure effectively eliminates aluminum contamination of the quantum well active region.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: November 2, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Tetsuya Takeuchi, Ying-Lan Chang, David P. Bour, Michael H. Leary, Michael R. T. Tan
  • Publication number: 20040206949
    Abstract: Light-emitting devices are described. One example of a light-emitting device includes a first barrier layer and a second barrier layer, and a quantum well layer located between the first and second barrier layers. The first and second barrier layers are composed of gallium arsenide, and the quantum well layer is composed of indium gallium arsenide nitride. A first layer is located between the quantum well layer and the first barrier layer. The first layer has a bandgap energy between that of the first barrier layer and that of the quantum well layer. Another example of a light-emitting device includes a quantum well and a carrier capture element adjacent the quantum well. The carrier capture element increases the effective carrier capture cross-section of the quantum well.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 21, 2004
    Inventors: David P. Bour, Michael H. Leary, Ying-Lan Chang, Yoon-Kyu Song, Michael R. T. Tan, Tetsuya Takeuchi, Danielle Chamberlin
  • Publication number: 20040184496
    Abstract: A nitride-based laser diode structure utilizing a single GaN:Mg waveguide/cladding layer, in place of separate GaN:Mg waveguide and AlGaN:Mg cladding layers used in conventional nitride-based laser diode structures. When formed using an optimal thickness, the GaN:Mg layer produces an optical confinement that is comparable to or better than conventional structures. A thin AlGaN tunnel barrier layer is provided between the multiple quantum well and a lower portion of the GaN:Mg waveguide layer, which suppresses electron leakage without any significant decrease in optical confinement. A split-metal electrode is formed on the GaN:Mg upper waveguide structure to avoid absorption losses in the upper electrode metal. A pair of AlGaN:Si current blocking layer sections are located below the split-metal electrode sections, and separated by a gap located over the active region of the multiple quantum well.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Applicant: Xerox Corporation
    Inventors: Michael A. Kneissl, David P. Bour, Linda T. Romano, Christian G. Van de Walle