Patents by Inventor David P. Druist

David P. Druist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9275665
    Abstract: In one embodiment, a slider includes a substrate, a magnetic head, and a coupling capacitor. In one embodiment, a slider includes a substrate, a magnetic head, and a coupling capacitor configured to AC couple an electronics ground of the slider to the substrate and DC decouple the electronics ground of the slider from the substrate, the coupling capacitor including: a first conductive layer, a gap layer positioned above the first conductive layer, a dielectric layer positioned above the gap layer and the first conductive layer, and a second conductive layer positioned above the dielectric layer. In another embodiment, a method for forming a capacitor includes forming a substrate, forming a first conductive layer above the substrate, forming a gap layer above the first conductive layer, forming a dielectric layer above the gap layer and the first conductive layer, and forming a second conductive layer above the dielectric layer.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: March 1, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Tuan M. Dinh, David P. Druist, David J. Seagle, Michael M. H. Yang
  • Publication number: 20160027459
    Abstract: In one embodiment, a slider includes a substrate, a magnetic head, and a coupling capacitor. In one embodiment, a slider includes a substrate, a magnetic head, and a coupling capacitor configured to AC couple an electronics ground of the slider to the substrate and DC decouple the electronics ground of the slider from the substrate, the coupling capacitor including: a first conductive layer, a gap layer positioned above the first conductive layer, a dielectric layer positioned above the gap layer and the first conductive layer, and a second conductive layer positioned above the dielectric layer. In another embodiment, a method for forming a capacitor includes forming a substrate, forming a first conductive layer above the substrate, forming a gap layer above the first conductive layer, forming a dielectric layer above the gap layer and the first conductive layer, and forming a second conductive layer above the dielectric layer.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 28, 2016
    Applicant: HGST Netherlands B.V.
    Inventors: Tuan M. Dinh, David P. Druist, David J. Seagle, Michael M.H. Yang
  • Patent number: 9053721
    Abstract: A magnetic read sensor having a magnetic seed layer, a pinned layer structure formed over the magnetic seed layer, a non-magnetic barrier or spacer layer formed over the pinned layer structure and a magnetic free layer structure formed over the non-magnetic barrier or spacer layer. The pinned layer has a stripe height (measured from the media facing surface) that is greater than a stripe height of the magnetic free layer structure. In addition, the magnetic seed layer structure has a stripe height (also measured from the media facing surface) that is greater than the stripe height of the magnetic pinned layer structure and the magnetic free layer structure. The stripe height of the magnetic seed layer structure can be controlled independently of the stripe heights of the magnetic pinned layer structure and the magnetic free layer structure.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 9, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Yongchul Ahn, David P. Druist, Zheng Gao, Ying Hong, Yunhe Huang, Quang Le, Thomas L. Leong, Guangli Liu, Xiaoyong Liu, David J. Seagle
  • Patent number: 8956200
    Abstract: Embodiments described herein generally relate to connecting Electronic Lapping Guides (ELG) to a lapping controller to reduce resistance from current crowding while reducing connections to the ELG. A device and a system can include a wafer with peripheral grounding vias having a radius of at least 10 ?m, a plurality of sliders with a magnetoresistive (MR) elements; a plurality of ELG electrically coupled to the lapping controller through a combination of the wafer and grounding pads and a bonding pad electrically coupled to the ELG. The ELG or the bonding pad can be positioned in the kerf or the device region of a row. If the ELG and the bonding pad are positioned in separate regions, a noble metal should be used to connect. Further, the number of grounding pads can be reduced by using grounding vias at specific intervals and specific sizes.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 17, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: David P. Druist, Glenn P. Gee, Unal M. Guruz, Edward H. Lee, David J. Seagle, Darrick T. Smith
  • Patent number: 8956201
    Abstract: Embodiments described herein generally relate to connecting electronic lapping guides (ELGs) to a lapping controller to prevent the effects of current crowding while reducing connections to the ELGs in single pad lapping. Devices and systems can include a row of sliders including a magnetoresistive (MR) element, a plurality of high resistance ELGs connected to both the wafer and to at least one bonding pad and at least two peripheral grounding vias connected to the wafer. Methods and systems include a wafer comprising a plurality of sliders wherein each slider is connected to a lapping controller and the delivery of current to the ELGs is sequential to groups of sliders such that only one group of ELGs is being measured at any time.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 17, 2015
    Assignee: HGST Netherlands, B.V.
    Inventors: David P. Druist, Glenn P. Gee, Edward H. Lee, David J. Seagle, Darrick T. Smith
  • Publication number: 20140175048
    Abstract: A method of manufacturing a magnetic sensor having a hard bias structure located at a back edge of the sensor. The method forms an electrical lapping guide that is compatible for use with such a sensor having a back edge hard bias structure and which can accurately determine a termination point for a lapping operation that forms an air bearing surface of the slider and determines the sensor stripe height.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: David P. Druist, Quang Le, Yang Li, David J. Seagle, Petrus A. Van Der Heijden
  • Publication number: 20140154952
    Abstract: Embodiments described herein generally relate to connecting Electronic Lapping Guides (ELG) to a lapping controller to reduce resistance from current crowding while reducing connections to the ELG. A device and a system can include a wafer with peripheral grounding vias having a radius of at least 10 ?m, a plurality of sliders with a magnetoresistive (MR) elements; a plurality of ELG electrically coupled to the lapping controller through a combination of the wafer and grounding pads and a bonding pad electrically coupled to the ELG. The ELG or the bonding pad can be positioned in the kerf or the device region of a row. If the ELG and the bonding pad are positioned in separate regions, a noble metal should be used to connect. Further, the number of grounding pads can be reduced by using grounding vias at specific intervals and specific sizes.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: David P. DRUIST, Glenn P. GEE, Unal M. GURUZ, Edward H. LEE, David J. SEAGLE, Darrick T. SMITH
  • Publication number: 20140154953
    Abstract: Embodiments described herein generally relate to connecting electronic lapping guides (ELGs) to a lapping controller to prevent the effects of current crowding while reducing connections to the ELGs in single pad lapping. Devices and systems can include a row of sliders including a magnetoresistive (MR) element, a plurality of high resistance ELGs connected to both the wafer and to at least one bonding pad and at least two peripheral grounding vias connected to the wafer. Methods and systems include a wafer comprising a plurality of sliders wherein each slider is connected to a lapping controller and the delivery of current to the ELGs is sequential to groups of sliders such that only one group of ELGs is being measured at any time.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: David P. DRUIST, Glenn P. GEE, Edward H. LEE, David J. SEAGLE, Darrick T. SMITH
  • Patent number: 8169754
    Abstract: A disk drive head slider for a magnetic disk drive is provided. The head slider includes a tunnel magnetic resistance device for reading data on a magnetic disk and a dedicated noncorrosive smear detector for measuring resistance wherein the resistance corresponds to a level of smear associated with the head slider.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: May 1, 2012
    Assignee: Hitachi Global Storage Technologies, Netherlands, B.V.
    Inventors: David P. Druist, David J. Seagle, Jila Tabib
  • Patent number: 7882618
    Abstract: Methods of fabricating magnetic read heads are provided which reduce the width of the scratch exposure region of a read head. During normal fabrication processes, a read head is formed with a first shield, a read element formed on the first shield, and hard bias layers formed on either side of the read element. The width of the read elements and the hard bias layers define an initial scratch exposure region. According to embodiments herein, a mask structure is formed to protect the read element and first portions of the hard bias layers proximate to the read element. A removal process is then performed to remove second portions of the hard bias layers that are not protected by the mask structure, which defines a final scratch exposure region that is smaller than the initial scratch exposure region.
    Type: Grant
    Filed: December 16, 2007
    Date of Patent: February 8, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: David P. Druist, Mohamad T. Krounbi, David J. Seagle
  • Publication number: 20090168268
    Abstract: A disk drive head slider for a magnetic disk drive is provided. The head slider includes a tunnel magnetic resistance device for reading data on a magnetic disk and a dedicated noncorrosive smear detector for measuring resistance wherein the resistance corresponds to a level of smear associated with the head slider.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: David P. Druist, David J. Seagle, Jila Tabib
  • Publication number: 20090151151
    Abstract: Methods of fabricating magnetic read heads are provided which reduce the width of the scratch exposure region of a read head. During normal fabrication processes, a read head is formed with a first shield, a read element formed on the first shield, and hard bias layers formed on either side of the read element. The width of the read elements and the hard bias layers define an initial scratch exposure region. According to embodiments herein, a mask structure is formed to protect the read element and first portions of the hard bias layers proximate to the read element. A removal process is then performed to remove second portions of the hard bias layers that are not protected by the mask structure, which defines a final scratch exposure region that is smaller than the initial scratch exposure region.
    Type: Application
    Filed: December 16, 2007
    Publication date: June 18, 2009
    Inventors: David P. Druist, Mohamad T. Krounbi, David J. Seagle
  • Patent number: 7243411
    Abstract: A method for protecting a write head coil during write pole notching using ion mill resistant mask formed by reactive ion etching is disclosed. Ion mill shaping of the write pole is performed after depositing an ion mill-resistant material to protect the coil.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: July 17, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David P. Druist, Aron Pentek