Patents by Inventor David P. Graybill

David P. Graybill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9132519
    Abstract: A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 15, 2015
    Assignee: INTERNTIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. Chainer, Patrick A. Coico, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Patent number: 9045995
    Abstract: An electronics rack with a cooling apparatus and a liquid-coolant-driven, electricity-generating system. The generating system includes a housing coupled in fluid communication with a fluid transport pipe of the cooling apparatus, an impeller disposed within the housing and positioned to turn with flow of fluid across the impeller, one or more magnetic structures disposed to turn with turning of the impeller, and an electrical circuit. Electricity is generated for the electrical circuit with turning of the one or more magnetic structures, and is supplied to an electrical load disposed within or associated with the electronics rack.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: June 2, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David P. Graybill, Allan R. Hoeft, Madhusudan K. Iyengar, Donald W. Porter, Enrico A. Romano, Roger R. Schmidt, Gerard V. Weber, Jr.
  • Publication number: 20150138715
    Abstract: Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
    Type: Application
    Filed: December 9, 2014
    Publication date: May 21, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Patent number: 9027360
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20150114602
    Abstract: Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20150116941
    Abstract: Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20150114601
    Abstract: Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 30, 2015
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Patent number: 8919143
    Abstract: An air-cooling apparatus is provided which includes an air-cooling wall cooling airflow passing through an electronics rack(s) of a data center. The air-cooling wall is disposed separate from and in spaced relation to the air inlet or air outlet side(s) of the electronics rack(s), and includes a wall panel support structure disposed separate from the electronics rack(s), which supports one or more slidable wall panels. The slidable wall panel(s) includes an air-to-liquid heat exchanger slidably supported and disposed in spaced relation to the air outlet or air inlet side of the electronics rack(s). The heat exchanger extracts heat from air passing across the heat exchanger and is slidable within the support structure in a direction transverse to the direction of airflow through the rack(s). Slidable support of the heat exchanger by the support structure facilitates access to the air outlet or air inlet sides of the electronics rack(s).
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: December 30, 2014
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Eric A. Eckberg, David P. Graybill, Madhusudan K. Iyengar, Howard V. Mahaney, Jr., Roger R. Schmidt, Kenneth R. Schneebeli
  • Patent number: 8913384
    Abstract: Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Milnes P. David, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Pritish R. Parida, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20140231061
    Abstract: A method is presented for adjusting coolant flow resistance through one or more liquid-cooled electronics racks. Flow restrictors are employed in association with multiple heat exchange tube sections of a heat exchange assembly, or in association with a plurality of coolant supply lines or coolant return lines feeding multiple heat exchange assemblies. Flow restrictors associated with respective heat exchange tube sections (or respective heat exchange assemblies) are disposed at the coolant channel inlet or coolant channel outlet of the tube sections (or of the heat exchange assemblies). These flow restrictors tailor coolant flow resistance through the heat exchange tube sections or through the heat exchange assemblies to enhance overall heat transfer within the tube sections or across heat exchange assemblies by tailoring coolant flow.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wayne A. BARRINGER, David P. GRAYBILL, Madhusudan K. IYENGAR, Roger R. SCHMIDT, James J. STEFFES, Gerard V. WEBER, JR.
  • Patent number: 8804334
    Abstract: An air-cooling apparatus is provided which includes a securing mechanism for holding two or more separate electronics racks in fixed relation adjacent to each other, and a multi-rack door sized and configured to span the air inlet or air outlet sides of the racks. The securing mechanism holds the electronics racks in fixed relation with their air inlet sides facing a first direction, and air outlet sides facing a second direction. The door includes a door frame with an airflow opening. The airflow opening facilitates the ingress or egress of airflow through the electronics racks, and the door further includes an air-to-liquid heat exchanger supported by the door frame, and disposed so that air flowing through the airflow opening passes across the heat exchanger. In operation, the heat exchanger extracts heat from the air passing through the separate electronics racks.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Eric A. Eckberg, David P. Graybill, Madhusudan K. Iyengar, Howard V. Mahaney, Jr., Roger R. Schmidt, Kenneth R. Schneebeli
  • Publication number: 20140104787
    Abstract: Several apparatuses and methods for providing cooling system interchangeability. One apparatus includes a thermally conductive plate thermally coupled to an integrated circuit. The thermally conductive plate is configured to couple interchangeably to a liquid cooling assembly or an air cooling assembly, and the liquid cooling assembly and the air cooling assembly are separate devices.
    Type: Application
    Filed: December 15, 2013
    Publication date: April 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20140101933
    Abstract: Several apparatuses and methods for providing cooling system interchangeability. One apparatus includes a thermally conductive plate thermally coupled to an integrated circuit. The thermally conductive plate is configured to couple interchangeably to a liquid cooling assembly or an air cooling assembly, and the liquid cooling assembly and the air cooling assembly are separate devices.
    Type: Application
    Filed: December 15, 2013
    Publication date: April 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Timothy J. Chainer, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20140090806
    Abstract: An air flow control assembly, system, and method for controlling air flow to a server rack. An example air flow control assembly includes a retractable barrier configured to block the air flow, at least partially, from passing through a perforated floor tile to the server rack. The air flow control assembly also includes a barrier mount configured to secure the retractable barrier proximate the perforated floor tile.
    Type: Application
    Filed: December 8, 2013
    Publication date: April 3, 2014
    Applicant: International Business Machines Corporation
    Inventors: Patrick A. Coico, David P. Graybill, Allan R. Hoeft, Madhusudan K. Iyengar, Roger R. Schmidt, Gerard V. Weber, JR.
  • Patent number: 8687364
    Abstract: A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Timothy J. Chainer, Patrick A. Coico, David P. Graybill, Madhusudan K. Iyengar, Vinod Kamath, Bejoy J. Kochuparambil, Roger R. Schmidt, Mark E. Steinke
  • Publication number: 20140078675
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20140078674
    Abstract: Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy J. CHAINER, David P. GRAYBILL, Madhusudan K. IYENGAR, Vinod KAMATH, Bejoy J. KOCHUPARAMBIL, Roger R. SCHMIDT, Mark E. STEINKE
  • Publication number: 20140043762
    Abstract: An air-cooling apparatus is provided which includes a securing mechanism for holding two or more separate electronics racks in fixed relation adjacent to each other, and a multi-rack door sized and configured to span the air inlet or air outlet sides of the racks. The securing mechanism holds the electronics racks in fixed relation with their air inlet sides facing a first direction, and air outlet sides facing a second direction. The door includes a door frame with an airflow opening. The airflow opening facilitates the ingress or egress of airflow through the electronics racks, and the door further includes an air-to-liquid heat exchanger supported by the door frame, and disposed so that air flowing through the airflow opening passes across the heat exchanger. In operation, the heat exchanger extracts heat from the air passing through the separate electronics racks.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric A. ECKBERG, David P. GRAYBILL, Madhusudan K. IYENGAR, Howard V. MAHANEY, JR., Roger R. SCHMIDT, Kenneth R. SCHNEEBELI
  • Publication number: 20140043759
    Abstract: An air-cooling apparatus is provided which includes a securing mechanism for holding two or more separate electronics racks in fixed relation adjacent to each other, and a multi-rack door sized and configured to span the air inlet or air outlet sides of the racks. The securing mechanism holds the electronics racks in fixed relation with their air inlet sides facing a first direction, and air outlet sides facing a second direction. The door includes a door frame with an airflow opening. The airflow opening facilitates the ingress or egress of airflow through the electronics racks, and the door further includes an air-to-liquid heat exchanger supported by the door frame, and disposed so that air flowing through the airflow opening passes across the heat exchanger. In operation, the heat exchanger extracts heat from the air passing through the separate electronics racks.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric A. ECKBERG, David P. GRAYBILL, Madhusudan K. IYENGAR, Howard V. MAHANEY, JR., Roger R. SCHMIDT, Kenneth R. SCHNEEBELI
  • Publication number: 20140043760
    Abstract: An air-cooling apparatus is provided which includes a securing mechanism for holding two or more separate electronics racks in fixed relation adjacent to each other, and a multi-rack door sized and configured to span the air inlet or air outlet sides of the racks. The securing mechanism holds the electronics racks in fixed relation with their air inlet sides facing a first direction, and air outlet sides facing a second direction. The door includes a door frame with an airflow opening. The airflow opening facilitates the ingress or egress of airflow through the electronics racks, and the door further includes an air-to-liquid heat exchanger supported by the door frame, and disposed so that air flowing through the airflow opening passes across the heat exchanger. In operation, the heat exchanger extracts heat from the air passing through the separate electronics racks.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric A. ECKBERG, David P. GRAYBILL, Madhusudan K. IYENGAR, Howard V. MAHANEY, JR., Roger R. SCHMIDT, Kenneth R. SCHNEEBELI