Patents by Inventor David P. Wilkinson

David P. Wilkinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11456455
    Abstract: The present application relates to a method comprising: (a) providing a battery comprising a manganese oxide composition as a primary active material; and (b) cycling the battery by: (i) galvanostatically discharging the battery to a first Vcell; (ii) galvanostatically charging the battery to a second Vcell; and (iii) potentiostatically charging at the second Vcell for a first defined period of time. The present application also relates to a chemical composition produced by the method above. The present application also relates to a battery comprising one or more chemical species, the one or more chemical species produced by cycling an activated composition.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: September 27, 2022
    Assignee: Octopus Technologies Inc.
    Inventors: David P. Wilkinson, Arman Bonakdarpour, Ivan Stosevski
  • Publication number: 20200362468
    Abstract: The present disclosure relates to an electrolytic manganese dioxide composition comprising two manganese dioxide phases, at least one of the two manganese dioxide phases having at least a portion that exhibits amorphicity. The two manganese dioxide phases may be present in a ratio of between 9:1 and 1:3. The two manganese dioxide crystal phases may be akhtenskite and ramsdellite. The present disclosure further relates to a battery comprising said electrolytic manganese dioxide composition, and methods of manufacturing said electrolytic manganese dioxide composition. The present disclosure further relates to manufacturing an electrode within a cell, the cell for use as a battery, the electrode comprising electrolytic manganese dioxide composition consisting essentially of two manganese dioxide crystal phases.
    Type: Application
    Filed: November 7, 2018
    Publication date: November 19, 2020
    Inventors: Arman BONAKDARPOUR, David P. WILKINSON, Farhang NESVADERANI, Ivan STOSEVSKI
  • Publication number: 20200194789
    Abstract: The present application relates to a method comprising: (a) providing a battery comprising a manganese oxide composition as a primary active material; and (b) cycling the battery by: (i) galvanostatically discharging the battery to a first Vcell; (ii) galvanostatically charging the battery to a second Vcell; and (iii) potentiostatically charging at the second Vcell for a first defined period of time. The present application also relates to a chemical composition produced by the method above. The present application also relates to a battery comprising one or more chemical species, the one or more chemical species produced by cycling an activated composition.
    Type: Application
    Filed: February 26, 2020
    Publication date: June 18, 2020
    Inventors: David P. Wilkinson, Arman Bonakdarpour, Ivan Stosevski
  • Patent number: 10615412
    Abstract: The present application relates to a method comprising: (a) providing a battery comprising a manganese oxide composition as a primary active material; and (b) cycling the battery by: (i) galvanostatically discharging the battery to a first Vcell; (ii) galvanostatically charging the battery to a second Vcell; and (iii) potentiostatically charging at the second Vcell for a first defined period of time. The present application also relates to a chemical composition produced by the method above. The present application also relates to a battery comprising a chemical composition having an X-ray diffractogram pattern expressing a Bragg peak at about 26°, said peak being of greatest intensity in comparison to other expressed Bragg peaks. The present application also relates to a battery comprising one or more chemical species, the one or more chemical species produced by cycling an activated composition.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: April 7, 2020
    Assignee: Octopus Technologies Inc.
    Inventors: David P. Wilkinson, Arman Bonakdarpour, Ivan Stosevski
  • Publication number: 20190237762
    Abstract: The present application relates to a method comprising: (a) providing a battery comprising a manganese oxide composition as a primary active material; and (b) cycling the battery by: (i) galvanostatically discharging the battery to a first Vcell; (ii) galvanostatically charging the battery to a second Vcell; and (iii) potentiostatically charging at the second Vcell for a first defined period of time. The present application also relates to a chemical composition produced by the method above. The present application also relates to a battery comprising a chemical composition having an X-ray diffractogram pattern expressing a Bragg peak at about 26°, said peak being of greatest intensity in comparison to other expressed Bragg peaks. The present application also relates to a battery comprising one or more chemical species, the one or more chemical species produced by cycling an activated composition.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 1, 2019
    Inventors: David P. Wilkinson, Arman Bonakdarpour, Ivan Stosevski
  • Patent number: 10044055
    Abstract: A fuel cell comprises an anode having an inner face and an outer face fluidly communicable with a fuel; a cathode having an inner face ionically communicable with and physically separated from the anode inner face, and having an outer face fluidly communicable with an oxidant; and at least one movable guard movable over at least one of the anode outer face, cathode outer face, anode inner face, and cathode inner face. The guard has a structure sufficient to block at least part of one or more of the anode's communication with the fuel, the cathode's communication with the oxidant, and the ionic communication between the anode and cathode thereby reducing a maximum potential active area of the fuel cell to an effective active area of the fuel cell.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 7, 2018
    Assignees: THE UNIVERSITY OF BRITISH COLUMBIA, NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: David P. Wilkinson, Alfred Lam
  • Patent number: 9951753
    Abstract: In various embodiments, an offshore electrical energy generator is disclosed. The generator includes a buoy configured to float on a body of water. A wind turbine is mounted to the buoy. An air storage tank is configured for submersion. An air compressor is stowed within the buoy and coupled to the wind turbine and configured to charge the air storage tank in response to receiving wind energy collected by the wind turbine. An expansion turbine is stowed within the buoy and is configured to receive compressed air stored within the air storage tank and to decompress the compressed air to generate electrical energy.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: April 24, 2018
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Nathan A. Sinclair, David P. Wilkinson, Jeffrey P. Kilpatrick
  • Patent number: 8988085
    Abstract: The invention described relates to an apparatus and method for measuring the concentration of a low molecular weight alcohol, in an aqueous liquid feed solution, comprising a first sensor including a hydrophilic capillary tube having an inner diameter, being disposed between two electrodes to form a first capacitor, a second sensor including a hydrophobic capillary tube having the same inner diameter as a capillary tube of the first sensor; said hydrophobic capillary tube having a hydrophobic coating on the inner diameter, being disposed between two electrodes to form a second capacitor, wherein the first hydrophilic and second hydrophobic sensors are dipped to the same depth in the aqueous solution to measure the solution concentration, means for measuring the capacitance of the two capacitors, and control means including a control circuit driven by a computer, wherein the difference in capacitance between the two capacitors is a measure of the concentration of the solution, independent of the depth of dippi
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 24, 2015
    Assignee: National Research Council of Canada
    Inventors: Jun Shen, Caikang (Elton) Gu, Jiujun Zhang, David P. Wilkinson, Haijiang Wang
  • Patent number: 8632927
    Abstract: A direct fuel cell comprises a cathode comprising electroactive catalyst material; and an anode assembly comprising an anode having a porous layer and electroactive catalyst material in the porous layer. The electrode characteristics of the anode assembly are selected so that fuel supplied to the anode is reacted within the anode so that cross-over from the anode to the cathode does not have more than a 10% negative effect on voltage or a 25 mV voltage loss when at peak power and steady state conditions. The anode and cathode each have a first major surface facing each other in non-electrical contact and without a microporous separator or ion exchange membrane therebetween.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 21, 2014
    Assignee: National Research Council of Canada
    Inventors: David P. Wilkinson, Alfred Lam
  • Publication number: 20110291676
    Abstract: The invention described relates to an apparatus and method for measuring the concentration of a low molecular weight alcohol, in an aqueous liquid feed solution, comprising a first sensor including a hydrophilic capillary tube having an inner diameter, being disposed between two electrodes to form a first capacitor, a second sensor including a hydrophobic capillary tube having the same inner diameter as a capillary tube of the first sensor; said hydrophobic capillary tube having a hydrophobic coating on the inner diameter, being disposed between two electrodes to form a second capacitor, wherein the first hydrophilic and second hydrophobic sensors are dipped to the same depth in the aqueous solution to measure the solution concentration, means for measuring the capacitance of the two capacitors, and control means including a control circuit driven by a computer, wherein the difference in capacitance between the two capacitors is a measure of the concentration of the solution, independent of the depth of dippi
    Type: Application
    Filed: February 5, 2010
    Publication date: December 1, 2011
    Inventors: Jun Shen, Caikang (Elton) Gu, Jiujun Zhang, David P. Wilkinson, Haijiang Wang
  • Publication number: 20110269039
    Abstract: A fuel cell comprises an anode having an inner face and an outer face fluidly communicable with a fuel; a cathode having an inner face ionically communicable with and physically separated from the anode inner face, and having an outer face fluidly communicable with an oxidant; and at least one movable guard movable over at least one of the anode outer face, cathode outer face, anode inner face, and cathode inner face. The guard has a structure sufficient to block at least part of one or more of the anode's communication with the fuel, the cathode's communication with the oxidant, and the ionic communication between the anode and cathode thereby reducing a maximum potential active area of the fuel cell to an effective active area of the fuel cell.
    Type: Application
    Filed: October 14, 2009
    Publication date: November 3, 2011
    Applicants: NATIONAL RESEARCH COUNCIL OF CANADA, THE UNIVERSITY OF BRITISH COLUMBIA
    Inventors: David P. Wilkinson, Alfred Lam
  • Publication number: 20100151354
    Abstract: A direct fuel cell comprises a cathode comprising electroactive catalyst material; and an anode assembly comprising an anode having a porous layer and electroactive catalyst material in the porous layer. The electrode characteristics of the anode assembly are selected so that fuel supplied to the anode is reacted within the anode so that cross-over from the anode to the cathode does not have more than a 10% negative effect on voltage or a 25 mV voltage loss when at peak power and steady state conditions. The anode and cathode each have a first major surface facing each other in non-electrical contact and without a microporous separator or ion exchange membrane therebetween.
    Type: Application
    Filed: April 30, 2008
    Publication date: June 17, 2010
    Applicants: NATIONAL RESEARCH COUNCIL OF CANADA, THE UNIVERSITY OF BRITISH COLUMBIA
    Inventors: David P. Wilkinson, Alfred Lam
  • Publication number: 20090214765
    Abstract: A voltage reversal tolerant fuel cell anode structure that includes a gas diffusion layer is prepared by a method that comprises: (a) applying to the gas diffusion layer a first carbon component comprising a sacrificial carbon component having substantially no resistance to corrosion during cell reversal at fuel cell operating temperatures, and (b) applying to the gas diffusion layer a second carbon component. The first carbon material has a BET surface area of at least 350 m2g?1. The second carbon component supports an electrocatalyst material and has substantially more resistance to corrosion during cell reversal at fuel cell operating temperatures than the first carbon component.
    Type: Application
    Filed: May 11, 2009
    Publication date: August 27, 2009
    Inventors: John M. Gascoyne, Shanna D. Knights, Thomas R. Ralph, Jared L. Taylor, David P. Wilkinson
  • Publication number: 20090053575
    Abstract: In a solid polymer fuel cell series, various circumstances can result in a fuel cell being driven into voltage reversal. For instance, cell voltage reversal can occur if that cell receives an inadequate supply of fuel. In order to pass current, reactions other than fuel oxidation may take place at the fuel cell anode, including water electrolysis and oxidation of anode components. The latter may result in significant degradation of the anode, particularly if the anode employs a carbon black supported catalyst. Such fuel cells can be made more tolerant to cell reversal by using higher catalyst loading or coverage on the anode catalyst support or a more oxidation resistant anode catalyst support, such as a more graphitic carbon or Ti4O7.
    Type: Application
    Filed: August 28, 2008
    Publication date: February 26, 2009
    Inventors: Shanna D. Knights, Jared L. Taylor, David P. Wilkinson, Stephen A. Campbell
  • Publication number: 20080248365
    Abstract: An adjustable flow field and flow regulation method for an electrochemical device such as field preferably includes a plurality of flow paths between an inlet and an outlet and a plurality of microvalves for regulating fluid flow through the flow paths in response to changes in the operating states of the fuel cell, such as changes in power output or temperature. For example, adjustment of the microvalves may restrict the number of flow paths through which fluid is flowing to alter the effective active area and current density of the flow field. The valves may be selectively opened or closed, either entirely or partially, to maintain a minimum pressure drop between the inlet and outlet. Alternatively or additionally, adjustment of the valves may alter the direction of fluid flow through at least some of the flow paths.
    Type: Application
    Filed: June 10, 2005
    Publication date: October 9, 2008
    Inventors: David P. Wilkinson, Roya Rahbarl, Joerg Zimmerman, Mauricio Blanco
  • Patent number: 7235315
    Abstract: An electrochemical fuel cell stack comprises a plurality of fuel cell assemblies, wherein, each fuel cell assembly comprises a cell compressed between a pair of flow field plates, a perimeter seal circumscribing the cell and interposed between the pair of flow field plates, and a first diode, having an aspect ratio greater than 10:1, positioned adjacent to, and outside of, the perimeter seal along a first edge of the cell and interposed between the pair of flow field plates.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: June 26, 2007
    Assignee: Ballard Power Systems Inc.
    Inventors: Shanna D Knights, Jacob W De Vaal, Michael V Lauritzen, David P Wilkinson
  • Patent number: 7014935
    Abstract: A solid polymer electrolyte fuel cell stack having a plurality of fuel cells, wherein at least one cell of the fuel cell stack has a resistance to corrosion that is greater than a significant portion of the other fuel cells of the stack. In one embodiment, the at least one fuel cell of the fuel cell stack that is more resistant to corrosion is one or both end cells of the stack. Also disclosed is a fuel cell system containing such a stack, as well as methods for reducing degradation of the same during operation.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: March 21, 2006
    Assignee: Ballard Power Systems Inc.
    Inventors: Shanna D. Knights, David P. Wilkinson
  • Patent number: 6974647
    Abstract: A fuel cell fluid distribution layer, in one embodiment, comprises perforated graphite foil. The fluid distribution layer can have one or more reactant flow field channels formed in one or both major surfaces, one or more manifold openings, conductive filler on one or both major surfaces, conductive filler at least partially filling some or all perforations and/or an electrocatalyst one or both major surfaces.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: December 13, 2005
    Assignee: Ballard Power Systems Inc.
    Inventors: David P. Wilkinson, Juergen Stumper, Stephen A. Campbell, Michael T. Davis, Gordon Lamont
  • Patent number: 6936370
    Abstract: In a solid polymer fuel cell series, various circumstances can result in the fuel cell being driven into voltage reversal. For instance, cell voltage reversal can occur if that cell receives an inadequate supply of fuel (for example, fuel starvation). In order to pass current during fuel starvation, reactions other than fuel oxidation may take place at the fuel cell anode, including water electrolysis and oxidation of anode components. The latter may result in significant degradation of the anode. Such fuel cells can be made more tolerant to cell reversal by promoting water electrolysis over anode component oxidation at the anode. This can be accomplished by incorporating a catalyst composition at the anode to promote the water electrolysis reaction, in addition to the typical anode electrocatalyst for promoting fuel oxidation.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: August 30, 2005
    Assignees: Ballard Power Systems Inc., Johnson Matthey Public Limited Company
    Inventors: Shanna D. Knights, David P. Wilkinson, Stephen A. Campbell, Jared L. Taylor, John M. Gascoyne, Thomas R. Ralph
  • Patent number: 6924057
    Abstract: In an improved electrochemical fuel cell assembly, a reactant flow path extends substantially linearly across the electrochemically active area of an electrode. The electrode has an in-plane nonuniform structure in its electrochemically active area as the active area is traversed in the direction of the substantially linear reactant flow path. Embodiments in which the structure of the fuel cell electrode varies substantially symmetrically along the reactant flow path are particularly preferred in fuel cells in which the flow direction of a reactant is periodically reversed.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 2, 2005
    Assignee: Ballard Power Systems Inc.
    Inventors: David P. Wilkinson, Peter R. Gibb