Patents by Inventor David Paez-Espino

David Paez-Espino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970719
    Abstract: Provided are compositions and methods that include one or more of: (1) a Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the effector protein, and/or a modified host cell comprising the effector protein (and/or a nucleic acid encoding the same); (2) a CRISPR/Cas guide RNA that binds to and provides sequence specificity to the Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the CRISPR/Cas guide RNA, and/or a modified host cell comprising the CRISPR/Cas guide RNA (and/or a nucleic acid encoding the same); and (3) a CRISPR/Cas transactivating noncoding RNA (trancRNA), a nucleic acid encoding the CRISPR/Cas trancRNA, and/or a modified host cell comprising the CRISPR/Cas trancRNA (and/or a nucleic acid encoding the same).
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: April 30, 2024
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20240131187
    Abstract: Provided herein are compositions, systems, and methods comprising effector proteins, effector partners, and uses thereof. These effector proteins may be characterized as CRISPR-associated (Cas) proteins. Various compositions, systems, and methods of the present disclosure may leverage the activities of these effector proteins for the modification, detection, and/or engineering of nucleic acids.
    Type: Application
    Filed: September 17, 2023
    Publication date: April 25, 2024
    Inventors: Timothy Robert ABBOTT, Aaron DELOUGHERY, David PAEZ-ESPINO, Benjamin Julius RAUCH
  • Patent number: 11814620
    Abstract: Provided herein are compositions, systems, and methods comprising effector proteins and uses thereof. These effector proteins are shown to be active with guide RNAs and may be characterized as CRISPR-associated (Cas) proteins. Various compositions, systems, and methods of the present disclosure leverage the activities of these effector proteins for the modification, detection, and engineering of nucleic acids.
    Type: Grant
    Filed: May 17, 2022
    Date of Patent: November 14, 2023
    Assignee: Mammoth Biosciences, Inc.
    Inventors: Benjamin Julius Rauch, Aaron DeLoughery, William Douglass Wright, David Paez-Espino, Clarissa Oriel Rhines, Lucas Benjamin Harrington, Wiputra Jaya Hartono
  • Publication number: 20230357735
    Abstract: Provided herein, in certain embodiments, are programmable nucleases, guide nucleic acids, and complexes thereof. Certain programmable nucleases provided herein comprise a RuvC domain. Also provided herein are nucleic acids encoding said programmable nucleases and guide nucleic acids. Also provided herein are methods of genome editing, methods of regulating gene expression, and methods of detecting nucleic acids with said programmable nucleases and guide nucleic acids.
    Type: Application
    Filed: June 3, 2021
    Publication date: November 9, 2023
    Inventors: Lucas Benjamin HARRINGTON, William Douglass WRIGHT, Pei-Qi LIU, Benjamin Julius RAUCH, Wiputra Jaya HARTONO, Bridget Ann Paine MCKAY, Danuta Sastre PHIPPS, Yuxuan ZHENG, Nerea SANVISENS, Sean CHEN, David PAEZ-ESPINO
  • Publication number: 20230323406
    Abstract: Provided herein are compositions, systems, and methods comprising effector proteins and uses thereof. These effector proteins are shown to be active with guide RNAs and may be characterized as CRISPR-associated (Cas) proteins. Various compositions, systems, and methods of the present disclosure leverage the activities of these effector proteins for the modification, detection, and engineering of nucleic acids.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 12, 2023
    Inventors: Aaron DELOUGHERY, Matan DRORY RETWITZER, Lucas Benjamin HARRINGTON, Wiputra Jaya HARTONO, Alexander Richard NECKELMANN, David PAEZ-ESPINO, Benjamin Julius RAUCH, Clarissa Oriel RHINES, Stepan TYMOSHENKO, Fnu YUNANDA, William Douglass WRIGHT
  • Publication number: 20230323319
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Application
    Filed: September 26, 2022
    Publication date: October 12, 2023
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20230257739
    Abstract: Provided herein are compositions, systems, and methods comprising effector proteins and uses thereof. These effector proteins are shown to be active with guide RNAs and may be characterized as CRISPR-associated (Cas) proteins. Various compositions, systems, and methods of the present disclosure leverage the activities of these effector proteins for the modification, detection, and engineering of nucleic acids.
    Type: Application
    Filed: September 23, 2022
    Publication date: August 17, 2023
    Inventors: Aaron DELOUGHERY, David PAEZ-ESPINO, Benjamin Julius RAUCH, Clarissa Oriel RHINES, Stepan TYMOSHENKO, Fnu YUNANDA, Matan DRORY RETWITZER, Lucas Benjamin HARRINGTON, Wiputra Jaya HARTONO, William Douglass WRIGHT, Alexander Richard NECKELMANN
  • Patent number: 11692184
    Abstract: The present disclosure provides RNA-guided endonucleases, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided endonuclease of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided endonuclease of the present disclosure and a guide RNA.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: July 4, 2023
    Assignee: The regents of the university of california
    Inventors: Nikos C. Kyrpides, Jennifer A. Doudna, Lucas Benjamin Harrington, David Paez-Espino
  • Publication number: 20230203481
    Abstract: Provided herein are compositions, systems, and methods comprising effector proteins and uses thereof. These effector proteins are shown to be active with guide RNAs and may be characterized as CRISPR-associated (Cas) proteins. Various compositions, systems, and methods of the present disclosure leverage the activities of these effector proteins for the modification, detection, and engineering of nucleic acids.
    Type: Application
    Filed: November 7, 2022
    Publication date: June 29, 2023
    Inventors: Rohan GROVER, Clarissa Oriel RHINES, Aaron DELOUGHERY, Benjamin Julius RAUCH, William Douglass WRIGHT, David PAEZ-ESPINO, Lucas Benjamin HARRINGTON
  • Publication number: 20230167454
    Abstract: Provided herein, in certain embodiments, are programmable nucleases, guide nucleic acids, and complexes thereof. Certain programmable nucleases provided herein comprise a RuvC domain. Also provided herein are nucleic acids encoding said programmable nucleases and guide nucleic acids. Also provided herein are methods of genome editing, methods of regulating gene expression, and methods of detecting nucleic acids with said programmable nucleases and guide nucleic acids.
    Type: Application
    Filed: August 11, 2022
    Publication date: June 1, 2023
    Inventors: Lucas Benjamin HARRINGTON, William Douglass WRIGHT, Pei-Qi LIU, Benjamin Julius RAUCH, Wiputra Jaya HARTONO, Bridget Ann Paine MCKAY, Danuta Sastre PHIPPS, Yuxuan ZHENG, Nerea SANVISENS, Sean CHEN, David PAEZ-ESPINO
  • Publication number: 20230068771
    Abstract: Provided herein are compositions, systems, and methods comprising effector proteins and uses thereof. These effector proteins are shown to be active with guide RNAs and may be characterized as CRISPR-associated (Cas) proteins. Various compositions, systems, and methods of the present disclosure leverage the activities of these effector proteins for the modification, detection, and engineering of nucleic acids.
    Type: Application
    Filed: May 17, 2022
    Publication date: March 2, 2023
    Inventors: Benjamin Julius RAUCH, Aaron DELOUGHERY, William Douglass WRIGHT, David PAEZ-ESPINO, Clarissa Oriel RHINES, Lucas Benjamin HARRINGTON, Wiputra Jaya HARTONO
  • Publication number: 20220387525
    Abstract: The present disclosure provides technologies for modulating microbiome of mammalian subjects (e.g., human subjects). The present disclosure, among others, provides therapeutic compositions and methods of using the same, wherein the therapeutic compositions comprising an engineered population of therapeutic bacteria that (i) are non-pathogenic and commensal in a subject to be administered; and (ii) are resistant to one or more target bacteriophages. In some embodiments, such therapeutic compositions can be useful for treatment of subjects suffering from or susceptible to a microbiome-dysfunction-associated disease, disorder, or condition (e.g., inflammatory bowel disease).
    Type: Application
    Filed: September 18, 2020
    Publication date: December 8, 2022
    Inventors: Alexandra Sakatos, Matthew James Cummings, Andrew Kau, Anne Rosen, Antonio David Paez Espino
  • Patent number: 11453866
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: September 27, 2022
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Patent number: 11441137
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: September 13, 2022
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Patent number: 11371031
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: June 28, 2022
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Patent number: 11180743
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: November 23, 2021
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20210214697
    Abstract: Provided are compositions and methods that include one or more of: (1) a Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the effector protein, and/or a modified host cell comprising the effector protein (and/or a nucleic acid encoding the same); (2) a CRISPR/Cas guide RNA that binds to and provides sequence specificity to the Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the CRISPR/Cas guide RNA, and/or a modified host cell comprising the CRISPR/Cas guide RNA (and/or a nucleic acid encoding the same); and (3) a CRISPR/Cas transactivating noncoding RNA (trancRNA), a nucleic acid encoding the CRISPR/Cas trancRNA, and/or a modified host cell comprising the CRISPR/Cas trancRNA (and/or a nucleic acid encoding the same).
    Type: Application
    Filed: October 31, 2018
    Publication date: July 15, 2021
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20210017508
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Application
    Filed: September 25, 2020
    Publication date: January 21, 2021
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20200392472
    Abstract: The present disclosure provides RNA-guided endonucleases, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided endonuclease of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided endonuclease of the present disclosure and a guide RNA.
    Type: Application
    Filed: May 15, 2018
    Publication date: December 17, 2020
    Inventors: Nikos C. Kyrpides, Jennifer A. Doudna, Lucas Benjamin Harrington, David Paez-Espino
  • Publication number: 20200370028
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Application
    Filed: May 27, 2020
    Publication date: November 26, 2020
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield