Patents by Inventor David Rickheim

David Rickheim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240041495
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Inventors: David Rickheim, Daniel Coyle, Dale Price, Jennifer Heisel
  • Patent number: 11812992
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: November 14, 2023
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Daniel Coyle, Dale Price, Jennifer Heisel
  • Publication number: 20220347429
    Abstract: A valve bypass tool, and a biostimulator transport system having such a valve bypass tool, is described. The valve bypass tool includes an annular seal to seal against a protective sheath of the biostimulator transport system. The valve bypass tool is slidably mounted on the protective sheath and includes a bypass sheath to insert into an access introducer. The valve bypass tool can lock onto the access introducer by mating a locking tab of the valve bypass tool with a locking groove of the access introducer. The locking tab can have a detent that securely fastens the components to resist decoupling when the biostimulator transport system is advanced through the access introducer into a patient anatomy. Other embodiments are also described and claimed.
    Type: Application
    Filed: May 20, 2022
    Publication date: November 3, 2022
    Inventors: David Rickheim, Scott M. Smith
  • Publication number: 20220338903
    Abstract: A retrieval system for a biostimulator, such as a leadless cardiac pacemaker, is described. The biostimulator retrieval system includes a docking cap rotatably coupled to an outer catheter by a bearing. A torque shaft extends through the outer catheter and attaches to the docking cap to transmit torque to the docking cap to cause rotation of the docking cap relative to the outer catheter. The rotating docking cap can transmit torque to an attachment feature of a biostimulator received within the docking cap. The attachment feature can be captured by a snare that extends through the torque shaft. A cincher tube extends through the torque shaft around the snare, and advances over the snare independently from the torque shaft that is attached to the docking cap, to cinch the snare onto the attachment feature. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 11, 2022
    Publication date: October 27, 2022
    Inventors: David Rickheim, Daniel Coyle, Adam Weber
  • Patent number: 11382663
    Abstract: A retrieval system for a biostimulator, such as a leadless cardiac pacemaker, is described. The biostimulator retrieval system includes a docking cap rotatably coupled to an outer catheter by a bearing. A torque shaft extends through the outer catheter and attaches to the docking cap to transmit torque to the docking cap to cause rotation of the docking cap relative to the outer catheter. The rotating docking cap can transmit torque to an attachment feature of a biostimulator received within the docking cap. The attachment feature can be captured by a snare that extends through the torque shaft. A cincher tube extends through the torque shaft around the snare, and advances over the snare independently from the torque shaft that is attached to the docking cap, to cinch the snare onto the attachment feature. Other embodiments are also described and claimed.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: July 12, 2022
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Daniel Coyle, Adam Weber
  • Patent number: 11364364
    Abstract: A valve bypass tool, and a biostimulator transport system having such a valve bypass tool, is described. The valve bypass tool includes an annular seal to seal against a protective sheath of the biostimulator transport system. The valve bypass tool is slidably mounted on the protective sheath and includes a bypass sheath to insert into an access introducer. The valve bypass tool can lock onto the access introducer by mating a locking tab of the valve bypass tool with a locking groove of the access introducer. The locking tab can have a decent that securely fastens the components to resist decoupling when the biostimulator transport system is advanced through the access introducer into a patient anatomy. Other embodiments are also described and claimed.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: June 21, 2022
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Scott M. Smith
  • Publication number: 20220023646
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Patent number: 11141597
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: October 12, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Publication number: 20210212725
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Application
    Filed: March 8, 2021
    Publication date: July 15, 2021
    Inventors: Daniel Coyle, Dale Price, David Rickheim
  • Patent number: 10966753
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 6, 2021
    Assignee: PACESETTER, INC.
    Inventors: Daniel Coyle, Dale Price, David Rickheim
  • Publication number: 20210085990
    Abstract: A biostimulator transport system, such as a biostimulator retrieval system, having a torque limiter to allow a torque shaft to slip rotationally relative to a handle, is described. The torque limiter can connect the torque shaft to the handle, and can include a slip mechanism, such as a flat spring or apposed clutch faces, that allow the torque shaft to slip relative to the handle when a resistance torque at a distal end of the torque shaft exceeds a torque threshold. Accordingly, torque can be applied to a biostimulator by the torque shaft with a reduced likelihood of over-torqueing the biostimulator within the target tissue. Other embodiments are also described and claimed.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 25, 2021
    Inventors: David Rickheim, Scott Kerns, Daniel Coyle
  • Publication number: 20200367931
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Application
    Filed: July 9, 2020
    Publication date: November 26, 2020
    Inventors: David Rickheim, Daniel Coyle, Dale Price, Jennifer Heisel
  • Publication number: 20200352600
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Daniel Goodman, Daniel Coyle, David Rickheim
  • Publication number: 20200345396
    Abstract: A retrieval system for a biostimulator, such as a leadless cardiac pacemaker, is described. The biostimulator retrieval system includes a docking cap rotatably coupled to an outer catheter by a bearing. A torque shaft extends through the outer catheter and attaches to the docking cap to transmit torque to the docking cap to cause rotation of the docking cap relative to the outer catheter. The rotating docking cap can transmit torque to an attachment feature of a biostimulator received within the docking cap. The attachment feature can be captured by a snare that extends through the torque shaft. A cincher tube extends through the torque shaft around the snare, and advances over the snare independently from the torque shaft that is attached to the docking cap, to cinch the snare onto the attachment feature. Other embodiments are also described and claimed.
    Type: Application
    Filed: June 24, 2019
    Publication date: November 5, 2020
    Inventors: David Rickheim, Daniel Coyle, Adam Weber
  • Publication number: 20200345982
    Abstract: A valve bypass tool, and a biostimulator transport system having such a valve bypass tool, is described. The valve bypass tool includes an annular seal to seal against a protective sheath of the biostimulator transport system. The valve bypass tool is slidably mounted on the protective sheath and includes a bypass sheath to insert into an access introducer. The valve bypass tool can lock onto the access introducer by mating a locking tab of the valve bypass tool with a locking groove of the access introducer. The locking tab can have a decent that securely fastens the components to resist decoupling when the biostimulator transport system is advanced through the access introducer into a patient anatomy. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 5, 2020
    Inventors: David Rickheim, Scott M. Smith
  • Patent number: 10758271
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: September 1, 2020
    Assignee: PACESETTER, INC.
    Inventors: Daniel Goodman, Daniel Coyle, David Rickheim
  • Patent number: 10743916
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: August 18, 2020
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Daniel Coyle, Dale Price, Jennifer Heisel
  • Publication number: 20190275340
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Publication number: 20180303514
    Abstract: Catheter-based delivery systems for delivery and retrieval of a leadless pacemaker include features to facilitate improved manipulation of the catheter and improved capture and docking functionality of leadless pacemakers. Such functionality includes mechanisms directed to deflecting and locking a deflectable catheter, maintaining tension on a retrieval feature, protection from anti-rotation, and improved docking cap and drive gear assemblies.
    Type: Application
    Filed: October 13, 2017
    Publication date: October 25, 2018
    Inventors: Daniel Coyle, Dale Price, David Rickheim
  • Patent number: D894396
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: August 25, 2020
    Assignee: PACESETTER, INC.
    Inventors: Jennifer Heisel, Craig E. Mar, Benjamin F. James, IV, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun