Patents by Inventor David S. Willits

David S. Willits has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9671362
    Abstract: Embodiments described herein provide for a pH sensor that comprises a substrate and an ion sensitive field effect transistor (ISFET) die. The ISFET die includes an ion sensing part that is configured to be exposed to a medium such that it outputs a signal related to the pH level of the medium. The ISFET die is bonded to the substrate with at least one composition of bonding agent material disposed between the ISFET die and the substrate. One or more strips of the at least one composition of bonding agent material is disposed between the substrate and the ISFET die in a first pattern.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: June 6, 2017
    Assignee: Honeywell International Inc.
    Inventors: Donald Horkheimer, Paul S. Fechner, David S. Willits
  • Patent number: 9664641
    Abstract: Embodiments described herein provide for a pH sensor that is configured for use over a pressure and temperature range. The ISFET die of the pH sensor is bonded to the substrate of the pH sensor with a bonding layer that is disposed between the substrate and the ISFET die. The pressure and temperature change across the pressure and temperature range generates an environmental force in the pH sensor. Further, the substrate or the bonding layer or both change volume over the pressure and temperature range, and the substrate or the bonding layer or both are configured such that the volume change induces a counteracting force that opposes at least a portion of the environmental force. The counteracting force is configured to maintain the change in piezoresistance of the ISFET die from the drain to the source to less than 0.5% over the pressure and temperature range.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 30, 2017
    Assignee: Honeywell International Inc.
    Inventors: Donald Horkheimer, Paul S. Fechner, David S. Willits
  • Patent number: 9587943
    Abstract: One embodiment is directed towards an inertial measurement unit (IMU) for measuring an input rate of rotation about an input axis. The IMU includes a first three dimensional gyroscope disposed such that a first axis of its three axes is oriented at a skew angle in degrees away from a reference plane, wherein the reference plane is normal to the input axis. The IMU also includes one or more processing devices coupled to the first gyroscope. The IMU also includes one or more data storage devices coupled to the one or more processing devices, the one or more data storage devices including instructions which, when executed by the one or more processing devices, cause the one or more processing devices to calculate the input rate of rotation based on dividing a sensed rate of rotation about the first axis by the sine of the skew angle.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 7, 2017
    Assignee: Honeywell International Inc.
    Inventors: Timothy J. Hanson, Terrance Troske, David S. Willits
  • Publication number: 20160097640
    Abstract: One embodiment is directed towards an inertial measurement unit (IMU) for measuring an input rate of rotation about an input axis. The IMU includes a first three dimensional gyroscope disposed such that a first axis of its three axes is oriented at a skew angle in degrees away from a reference plane, wherein the reference plane is normal to the input axis. The IMU also includes one or more processing devices coupled to the first gyroscope. The IMU also includes one or more data storage devices coupled to the one or more processing devices, the one or more data storage devices including instructions which, when executed by the one or more processing devices, cause the one or more processing devices to calculate the input rate of rotation based on dividing a sensed rate of rotation about the first axis by the sine of the skew angle.
    Type: Application
    Filed: January 29, 2015
    Publication date: April 7, 2016
    Inventors: Timothy J. Hanson, Terrance Troske, David S. Willits
  • Publication number: 20150028395
    Abstract: Embodiments described herein provide for a pH sensor that comprises a substrate and an ion sensitive field effect transistor (ISFET) die. The ISFET die includes an ion sensing part that is configured to be exposed to a medium such that it outputs a signal related to the pH level of the medium. The ISFET die is bonded to the substrate with at least one composition of bonding agent material disposed between the ISFET die and the substrate. One or more strips of the at least one composition of bonding agent material is disposed between the substrate and the ISFET die in a first pattern.
    Type: Application
    Filed: July 29, 2013
    Publication date: January 29, 2015
    Inventors: Donald Horkheimer, Paul S. Fechner, David S. Willits
  • Publication number: 20150028396
    Abstract: Embodiments described herein provide for a pH sensor that is configured for use over a pressure and temperature range. The ISFET die of the pH sensor is bonded to the substrate of the pH sensor with a bonding layer that is disposed between the substrate and the ISFET die. The pressure and temperature change across the pressure and temperature range generates an environmental force in the pH sensor. Further, the substrate or the bonding layer or both change volume over the pressure and temperature range, and the substrate or the bonding layer or both are configured such that the volume change induces a counteracting force that opposes at least a portion of the environmental force. The counteracting force is configured to maintain the change in piezoresistance of the ISFET die from the drain to the source to less than 0.5% over the pressure and temperature range.
    Type: Application
    Filed: July 29, 2013
    Publication date: January 29, 2015
    Inventors: Donald Horkheimer, Paul S. Fechner, David S. Willits
  • Publication number: 20150024508
    Abstract: A pH sensing apparatus includes an ion-sensing cell that includes a first half-cell including a first Ion-Sensitive Field Effect Transistor (ISFET) exposed to a surrounding solution; and a second reference half-cell exposed to the surrounding solution. The pH sensing apparatus further includes a pressure sensitivity compensation loop including a Non Ion-Sensitive Field Effect Transistor (NISFET). The pH sensing apparatus is configured to compensate for at least one of pressure and physical stresses using signals from the ion-sensing cell and feedback from the pressure sensitivity compensation loop. The pH sensing cell further includes a processing device configured to calculate a final pH reading compensated to minimize the at least one of pressure and physical stresses.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Donald Horkheimer, David S. Willits
  • Publication number: 20100084752
    Abstract: Systems and methods for enabling hermetic sealing at the wafer level during fabrication of a microelectromechanical sensor (MEMS) device. The MEMS device has a specialized hermetic interface chip (HIC) that facilitates a stable hermetic sealing process. The HIC includes a plurality of vias in a substrate layer, a plurality of mesas having etched portions, a seal ring, a plurality of conductive leads on a first side of the HIC, and a plurality of conductive leads on a second side of the HIC. The plurality of conductive leads on the first side of the HIC feeds from the etched portions of the plurality of mesas through the plurality of vias in the substrate layer to the plurality of conductive leads on the second side of the HIC. The conductive leads are capable of connecting an external circuit to the MEMS device.
    Type: Application
    Filed: October 8, 2008
    Publication date: April 8, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert D. Horning, David S. Willits