Patents by Inventor David Schurig

David Schurig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9105979
    Abstract: An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ?, ?, ?, ?, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 11, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Bruce Marshall McWilliams, John Brian Pendry, David Schurig, David R. Smith, Anthony F. Starr, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20150222075
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: April 10, 2015
    Publication date: August 6, 2015
    Applicant: ELWHA LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Patent number: 9099786
    Abstract: An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ?, ?, ?, ?, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 4, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Bruce Marshall McWilliams, John Brian Pendry, David Schurig, David R. Smith, Anthony F. Starr, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 9083082
    Abstract: Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: July 14, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Edward K. Y. Jung, John Brian Pendry, David Schurig, David R. Smith, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9081202
    Abstract: Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: July 14, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Edward K. Y. Jung, John Brian Pendry, David Schurig, David R. Smith, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9081123
    Abstract: Apparatus, methods, and systems provide conversion of evanescent electromagnetic waves to non-evanescent electromagnetic waves and/or conversion of non-evanescent electromagnetic waves to evanescent electromagnetic waves. In some approaches the conversion includes propagation of electromagnetic waves within an indefinite electromagnetic medium, and the indefinite medium may include an artificially-structured material such as a layered structure or other metamaterial.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: July 14, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Edward K. Y. Jung, John Brian Pendry, David Schurig, David R. Smith, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9052502
    Abstract: Exemplary methods, systems and components enable an enhanced direct-viewing optical device to make customized adjustments that accommodate various optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 9, 2015
    Assignee: ELWHA LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9046683
    Abstract: Exemplary methods, systems and components enable an enhanced direct-viewing optical device to make customized adjustments that accommodate various optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 2, 2015
    Assignee: ELWHA LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9048621
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 2, 2015
    Assignee: ELWHA LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 9033497
    Abstract: Exemplary embodiments enable an enhanced direct-viewing optical device to include customized adjustments that accommodate various optical aberrations of a current user. Customized optical elements associated with an authorized current user are incorporated with the direct-viewing optical device to produce a specified change in optical wavefront at an exit pupil. Possible replacement optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics based on current performance viewing factors for a given field of view of the direct-viewing optical device. Some embodiments enable dynamic repositioning and/or transformation of replaceable corrective optical elements responsive to a detected shift of a tracked gaze direction of a current user. Replaceable interchangeable corrective optical elements may be fabricated for current usage or retained in inventory for possible future usage in designated direct-viewing optical devices.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: May 19, 2015
    Assignee: ELWHA LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9019632
    Abstract: Apparatus, methods, and systems provide negatively-refractive focusing and sensing of electromagnetic energy. In some approaches the negatively-refractive focusing includes providing an interior focusing region with an axial magnification substantially greater than one. In some approaches the negatively-refractive focusing includes negatively-refractive focusing with a transformation medium, where the transformation medium may include an artificially-structured material such as a metamaterial.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 28, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Edward K. Y. Jung, John Brian Pendry, David Schurig, David R. Smith, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9004683
    Abstract: Exemplary embodiments enable an enhanced direct-viewing optical device to make customized adjustments that accommodate optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements include refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: April 14, 2015
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 8988759
    Abstract: An apparatus to modify an incident free space electromagnetic wave includes a block of an artificially structured material having an adjustable spatial distribution of electromagnetic parameters (e.g., ?, ?, ?, ?, and n). A controller applies control signals to dynamically adjust the spatial distribution of electromagnetic parameters in the material to introduce a time-varying path delay d(t) in the modified electromagnetic wave relative to the incident electromagnetic wave.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: March 24, 2015
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Bruce Marshall McWilliams, John Brian Pendry, David Schurig, David R. Smith, Anthony F. Starr, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20150077855
    Abstract: The design method for complex electromagnetic materials is expanded from form-invariant coordinate transformations of Maxwell's equations to finite embedded coordinate transformations. Embedded transformations allow the transfer of electromagnetic field manipulations from the transformation-optical medium to another medium, thereby allowing the design of structures that are not exclusively invisible. A topological criterion for the reflectionless design of complex media is also disclosed and is illustrated in conjunction with the topological criterion to design a parallel beam shifter and a beam splitter with unconventional electromagnetic behavior.
    Type: Application
    Filed: August 19, 2014
    Publication date: March 19, 2015
    Applicant: Duke University
    Inventors: Marco RAHM, David R. Smith, David A. Schurig
  • Publication number: 20150016483
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Patent number: 8934166
    Abstract: Exemplary methods, systems and components enable an enhanced direct-viewing optical device to include customized adjustments that accommodate various optical aberrations of a current user. A real-time adjustment of transformable optical elements is sometimes based on predetermined corrective optical parameters associated with a current user. Customized optical elements are incorporated with the direct-viewing optical device to produce a specified change in optical wavefront at an exit pupil. Possible transformable or replacement optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are selected based on current performance viewing factors for a given field of view of the direct-viewing device. Some embodiments enable dynamic repositioning and/or transformation of corrective optical elements responsive to a detected shift of a tracked gaze direction of a current user.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 13, 2015
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 8871121
    Abstract: Devices and components that can interact with or modify propagation of electromagnetic waves are provided. The design, fabrication and structures of the devices exploit the properties of reactive composite materials (RCM) and reaction products thereof.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 28, 2014
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, Thomas J. Nugent, Jr., John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 8837031
    Abstract: The design method for complex electromagnetic materials is expanded from form-invariant coordinate transformations of Maxwell's equations to finite embedded coordinate transformations. Embedded transformations allow the transfer of electromagnetic field manipulations from the transformation-optical medium to another medium, thereby allowing the design of structures that are not exclusively invisible. A topological criterion for the reflectionless design of complex media is also disclosed and is illustrated in conjunction with the topological criterion to design a parallel beam shifter and a beam splitter with unconventional electromagnetic behavior.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 16, 2014
    Assignee: Duke University
    Inventors: Marco Rahm, David R. Smith, David A. Schurig
  • Patent number: 8837058
    Abstract: Apparatus, methods, and systems provide emitting and negatively-refractive focusing of electromagnetic energy. In some approaches the negatively-refractive focusing includes negatively-refractive focusing from an interior field region with an axial magnification substantially less than one. In some approaches the negatively-refractive focusing includes negatively-refractive focusing with a transformation medium, where the transformation medium may include an artificially-structured material such as a metamaterial.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: September 16, 2014
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Edward K. Y. Jung, John Brian Pendry, David Schurig, David R. Smith, Clarence T. Tegreene, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 8830556
    Abstract: One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 9, 2014
    Assignee: The Regents of the University of California
    Inventors: David R. Smith, David Schurig, Anthony F. Starr, Jack J. Mock