Patents by Inventor David Viscardi

David Viscardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980549
    Abstract: A method of repairing a fractured bone may include implanting a prosthetic stem into an intramedullary canal of the fractured bone. First and second bone segments of the fractured bone may be robotically machined to include first and second implant-facing surfaces that are substantially negatives of first and second surface portions of the first end of the prosthetic stem. The first and second tuberosities may be machined so that the first and second bone segments have first and second interlocking surfaces shaped to interlock with each other. During implantation, the first and second implant-facing surfaces are in contact with the first and second surface portions of the first end of the prosthetic stem, and the first interlocking surface interlocks with the second interlocking surface.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: May 14, 2024
    Assignee: Howmedica Osteonics Corp.
    Inventors: Rajan Yadav, Koustubh Rao, Andrew J. Nelson, David Viscardi, Jetinder Singh
  • Patent number: 11833056
    Abstract: A stemless prosthetic shoulder joint may include a prosthetic humeral head and a stemless base. The stemless base may include a collar and an anchor extending from the collar intended to anchor the base into the proximal humerus. The anchor may include various features to enhance the fixation of the base, including hooks, threads, and/or expandable members that may be transitioned from a contracted insertion condition to an expanded implanted condition once the base is positioned in the bone. The anchor and/or collar may also include additional features to enhance fixation, such as geometries and surface features to enhance fixation to bone. The anchor may include a plurality of chisel slots to facilitate removal of bone during a revision surgery.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: December 5, 2023
    Assignee: Howmedica Osteonics Corp.
    Inventors: Philip T. Kemp, Andrew J. Nelson, Jan Heinsohn, Rajan Yadav, Koustubh Rao, Gennaro A. Barile, Ashish Mehta, Venkateswaran Perumal, David Viscardi
  • Publication number: 20230090775
    Abstract: A method of repairing a fractured bone may include implanting a prosthetic stem into an intramedullary canal of the fractured bone. First and second bone segments of the fractured bone may be robotically machined to include first and second implant-facing surfaces that are substantially negatives of first and second surface portions of the first end of the prosthetic stem. The first and second tuberosities may be machined so that the first and second bone segments have first and second interlocking surfaces shaped to interlock with each other. During implantation, the first and second implant-facing surfaces are in contact with the first and second surface portions of the first end of the prosthetic stem, and the first interlocking surface interlocks with the second interlocking surface.
    Type: Application
    Filed: November 29, 2022
    Publication date: March 23, 2023
    Inventors: Rajan Yadav, Koustubh Rao, Andrew J. Nelson, David Viscardi, Jetinder Singh
  • Patent number: 11559405
    Abstract: A method of repairing a fractured humerus may include implanting a prosthetic humeral stem into a humeral canal of the fractured humerus. First and second tuberosities of the fractured humerus may be robotically machined to include first and second implant-facing surfaces that are substantially negatives of first and second surface portions of the proximal end of the prosthetic humeral stem. The first and second tuberosities may be machined so that the first and second tuberosities have first and second interlocking surfaces shaped to interlock with each other. During implantation, the first and second implant-facing surfaces are in contact with the first and second surface portions of the proximal end of the prosthetic humeral stem, and the first interlocking surface interlocks with the second interlocking surface.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: January 24, 2023
    Assignee: Howmedica Osteonics Corp.
    Inventors: Rajan Yadav, Koustubh Rao, Andrew J. Nelson, David Viscardi, Jetinder Singh
  • Publication number: 20220354668
    Abstract: Robotic system and methods for preparing a bone of a joint to receive an implant. Virtual object(s) are used to define a volume of material to be removed from the bone for receipt of the implant. A robotic manipulator controls a cutting tool based on the virtual object(s) to form a first cavity and a second cavity in the bone. The second cavity is formed beneath the first cavity and is rotated relative to the first cavity to define an undercut in the bone. The first and second cavities receive a body and a locking member of the implant in an unlocked position. The locking member is rotated within the second cavity to a locked position whereby the undercut engages the locking member to limit withdrawal of the implant from the bone.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 10, 2022
    Applicant: Howmedica Osteonics Corp.
    Inventors: David Viscardi, Jan Heinsohn, Andrew Jacob Nelson, Rajan Yadav, Jetinder Singh
  • Patent number: 11432945
    Abstract: Robotic system and methods for robotic arthroplasty. The robotic system includes a machining station and a guidance station. The guidance station tracks movement of various objects in the operating room, such as a surgical tool, a humerus of a patient, and a scapula of the patient. The guidance station tracks these objects for purposes of displaying their relative positions and orientations to the surgeon and, in some cases, for purposes of controlling movement of the surgical tool relative to virtual cutting boundaries or other virtual objects associated with the humerus and scapula to facilitate preparation of bone to receive a shoulder implant system.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: September 6, 2022
    Assignee: Howmedica Osteonics Corp.
    Inventors: David Viscardi, Jan Heinsohn, Andrew Nelson, Rajan Yadav, Jetinder Singh
  • Publication number: 20220117666
    Abstract: Robotic systems and methods for robotic arthroplasty. The robotic system includes a machining station and a guidance station. The guidance station tracks movement of various objects in the operating room, such as a surgical tool, a humerus of a patient, and a scapula of the patient. The guidance station tracks these objects for purposes of controlling movement of the surgical tool relative to virtual cutting boundaries or other virtual objects associated with the humerus and scapula to facilitate preparation of bone to receive a shoulder implant system. In some versions, planning for placement of a stemless implant component is based on a future location of a stemmed shoulder implant to be placed in the humerus during a revision surgery.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Applicant: MAKO Surgical Corp.
    Inventors: David Viscardi, Jan Heinsohn, Andrew Nelson, Phil Kemp, Rajan Yadav, Jetinder Singh, Koustubh Rao
  • Publication number: 20220110756
    Abstract: A stemless prosthetic shoulder joint may include a prosthetic humeral head and a stemless base. The stemless base may include a collar and an anchor extending from the collar intended to anchor the base into the proximal humerus. The anchor may include various features to enhance the fixation of the base, including hooks, threads, and/or expandable members that may be transitioned from a contracted insertion condition to an expanded implanted condition once the base is positioned in the bone. The anchor and/or collar may also include additional features to enhance fixation, such as geometries and surface features to enhance fixation to bone. The anchor may include a plurality of chisel slots to facilitate removal of bone during a revision surgery.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Inventors: Philip T. Kemp, Andrew J. Nelson, Jan Heinsohn, Rajan Yadav, Koustubh Rao, Gennaro A. Barile, Ashish Mehta, Venkateswaran Perumal, David Viscardi
  • Patent number: 11241285
    Abstract: Robotic systems and methods for robotic arthroplasty. The robotic system includes a machining station and a guidance station. The guidance station tracks movement of various objects in the operating room, such as a surgical tool, a humerus of a patient, and a scapula of the patient. The guidance station tracks these objects for purposes of controlling movement of the surgical tool relative to virtual cutting boundaries or other virtual objects associated with the humerus and scapula to facilitate preparation of bone to receive a shoulder implant system. In some versions, planning for placement of a stemless implant component is based on a future location of a stemmed shoulder implant to be placed in the humerus during a revision surgery.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 8, 2022
    Assignee: MAKO Surgical Corp.
    Inventors: David Viscardi, Jan Heinsohn, Andrew Nelson, Phil Kemp, Rajan Yadav, Jetinder Singh, Koustubh Rao
  • Publication number: 20210338442
    Abstract: A stemless prosthetic shoulder joint may include a prosthetic humeral head and a stemless base. The stemless base may include a collar and an anchor extending from the collar intended to anchor the base into the proximal humerus. The anchor may include various features to enhance the fixation of the base, including hooks, threads, and/or expandable members that may be transitioned from a contracted insertion condition to an expanded implanted condition once the base is positioned in the bone. The anchor and/or collar may also include additional features to enhance fixation, such as geometries and surface features to enhance fixation to bone. The anchor may include a plurality of chisel slots to facilitate removal of bone during a revision surgery.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Philip T. Kemp, Andrew J. Nelson, Jan Heinsohn, Rajan Yadav, Koustubh Rao, Gennaro A. Barile, Ashish Mehta, Venkateswaran Perumal, David Viscardi
  • Publication number: 20210244546
    Abstract: A method of repairing a fractured humerus may include implanting a prosthetic humeral stem into a humeral canal of the fractured humerus. First and second tuberosities of the fractured humerus may be robotically machined to include first and second implant-facing surfaces that are substantially negatives of first and second surface portions of the proximal end of the prosthetic humeral stem. The first and second tuberosities may be machined so that the first and second tuberosities have first and second interlocking surfaces shaped to interlock with each other. During implantation, the first and second implant-facing surfaces are in contact with the first and second surface portions of the proximal end of the prosthetic humeral stem, and the first interlocking surface interlocks with the second interlocking surface.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 12, 2021
    Inventors: Rajan Yadav, Koustubh Rao, Andrew J. Nelson, David Viscardi, Jetinder Singh
  • Patent number: 11076962
    Abstract: A stemless prosthetic shoulder joint may include a prosthetic humeral head and a stemless base. The stemless base may include a collar and an anchor extending from the collar intended to anchor the base into the proximal humerus. The anchor may include various features to enhance the fixation of the base, including hooks, threads, and/or expandable members that may be transitioned from a contracted insertion condition to an expanded implanted condition once the base is positioned in the bone. The anchor and/or collar may also include additional features to enhance fixation, such as geometries and surface features to enhance fixation to bone. The anchor may include a plurality of chisel slots to facilitate removal of bone during a revision surgery.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 3, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Philip T. Kemp, Andrew J. Nelson, Jan Heinsohn, Rajan Yadav, Koustubh Rao, Gennaro A. Barile, Ashish Mehta, Venkateswaran Perumal, David Viscardi
  • Patent number: 11058544
    Abstract: A method of implanting a prosthetic stemless shoulder implant may include making an incision into a patient's shoulder area of a patient and passing a cutting instrument through a rotator cuff interval of the patient. A central portion of the native humeral head may be resected and removed so that a central void remains. The same or another cutting instrument may be inserted through the rotator cuff interval and into the central void. Medial and lateral portions of the native humeral head adjacent the central void may be resected and removed. A base of a prosthesis may be implanted into a proximal portion of the humerus after passing the base through the rotator cuff interval, and two humeral head portions may be inserted through the rotator cuff interval and coupled to the base and to one another.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Howmedica Osteonics Corp.
    Inventors: Joaquin Sanchez-Sotelo, David Viscardi
  • Patent number: 10849761
    Abstract: Disclosed herein are orthopedic revision systems including a base member having a collar portion and at least one stabilization portion extending outwardly from the collar portion. The systems may further include a stem member having an attachment portion and a shaft portion, the stem member configured to be received at least partially through an opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft portion lies adjacent the at least one stabilizing portion. In a method of performing revision surgery with such orthopedic systems includes forming an opening in the collar of the base member for receipt of the stem member by removing an inner portion of the collar portion and inserting the stem member at least partially through the opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft member lies adjacent the at least one stabilizing portion.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: December 1, 2020
    Assignee: Howmedica Osteonics Corp.
    Inventors: David Viscardi, Nicholas Olson, Jonathan You
  • Patent number: 10779951
    Abstract: A stemless prosthetic shoulder joint may include a prosthetic humeral head and a stemless base. The stemless base may include a collar and an anchor extending from the collar intended to anchor the base into the proximal humerus. The anchor may include various features to enhance the fixation of the base, including hooks, threads, and/or expandable members that may be transitioned from a contracted insertion condition to an expanded implanted condition once the base is positioned in the bone. The anchor and/or collar may also include additional features to enhance fixation, such as geometries and surface features to enhance fixation to bone. The anchor may include a plurality of chisel slots to facilitate removal of bone during a revision surgery.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 22, 2020
    Assignee: Howmedica Osteonics Corp.
    Inventors: Philip T. Kemp, Andrew J. Nelson, Jan Heinsohn, Rajan Yadav, Koustubh Rao, Gennaro A. Barile, Joaquin Sanchez-Sotelo, Ashish Mehta, Venkateswaran Perumal, David Viscardi
  • Patent number: 10675151
    Abstract: Disclosed herein are an implant with a suture passage and a method of attaching sutures to the same. The implant may include a suture pocket having a first pocket, a second pocket, and a suture hole disposed therebetween. The first pocket may have a first wall segment, the second pocket may have a second wall segment, and the suture hole may have a first sidewall segment extending from a first opening to a second opening. The first wall segment, the second wall segment, and the first sidewall segment may form a contiguous wall. A method of attaching a suture to the implant may include placing a tip of a suture needle on the first wall segment, sliding the suture needle into the first opening and pushing the suture needle through the suture hole.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: June 9, 2020
    Assignee: Howmedica Osteonics Corp.
    Inventors: Rajan Yadav, David Viscardi, Koustubh Rao, Nicholas Olson, Roy Philip Splieth
  • Publication number: 20200129300
    Abstract: A method of implanting a prosthetic stemless shoulder implant may include making an incision into a patient's shoulder area of a patient and passing a cutting instrument through a rotator cuff interval of the patient. A central portion of the native humeral head may be resected and removed so that a central void remains. The same or another cutting instrument may be inserted through the rotator cuff interval and into the central void. Medial and lateral portions of the native humeral head adjacent the central void may be resected and removed. A base of a prosthesis may be implanted into a proximal portion of the humerus after passing the base through the rotator cuff interval, and two humeral head portions may be inserted through the rotator cuff interval and coupled to the base and to one another.
    Type: Application
    Filed: October 4, 2019
    Publication date: April 30, 2020
    Inventors: Joaquin Sanchez-Sotelo, David Viscardi
  • Publication number: 20190269519
    Abstract: Disclosed herein are orthopedic revision systems including a base member having a collar portion and at least one stabilization portion extending outwardly from the collar portion. The systems may further include a stem member having an attachment portion and a shaft portion, the stem member configured to be received at least partially through an opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft portion lies adjacent the at least one stabilizing portion. In a method of performing revision surgery with such orthopedic systems includes forming an opening in the collar of the base member for receipt of the stem member by removing an inner portion of the collar portion and inserting the stem member at least partially through the opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft member lies adjacent the at least one stabilizing portion.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 5, 2019
    Inventors: David Viscardi, Nicholas Olson, Jonathan You
  • Patent number: 10335285
    Abstract: Disclosed herein are orthopedic revision systems including a base member having a collar portion and at least one stabilization portion extending outwardly from the collar portion. The systems may further include a stem member having an attachment portion and a shaft portion, the stem member configured to be received at least partially through an opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft portion lies adjacent the at least one stabilizing portion. In a method of performing revision surgery with such orthopedic systems includes forming an opening in the collar of the base member for receipt of the stem member by removing an inner portion of the collar portion and inserting the stem member at least partially through the opening in the collar portion such that the attachment portion lies adjacent the collar portion and the shaft member lies adjacent the at least one stabilizing portion.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 2, 2019
    Assignee: Howmedica Osteonics Corp.
    Inventors: David Viscardi, Nicholas Olson, Jonathan You
  • Publication number: 20190142518
    Abstract: Robotic systems and methods for robotic arthroplasty. The robotic system includes a machining station and a guidance station. The guidance station tracks movement of various objects in the operating room, such as a surgical tool, a humerus of a patient, and a scapula of the patient. The guidance station tracks these objects for purposes of controlling movement of the surgical tool relative to virtual cutting boundaries or other virtual objects associated with the humerus and scapula to facilitate preparation of bone to receive a shoulder implant system. In some versions, planning for placement of a stemless implant component is based on a future location of a stemmed shoulder implant to be placed in the humerus during a revision surgery.
    Type: Application
    Filed: November 6, 2018
    Publication date: May 16, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: David Viscardi, Jan Heinsohn, Andrew Nelson, Phil Kemp, Rajan Yadav, Jetinder Singh, Koustubh Rao