Patents by Inventor David W. Leyshon

David W. Leyshon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230339832
    Abstract: A method for removing metal salts from alkylaromatic oxidate streams used for alkene oxide production, or used in the co-production of propylene oxide and styrene monomer (“POSM”), and methods for caustic washing of oxidate streams formed in these processes. The concentration of metal salts carried over from a caustic washing may be reduced by washing the organic phase resulting from the caustic wash with water in the presence of carbon dioxide (CO2). The CO2 may be provided in any form, such as gaseous CO2, dry ice, carbonated water, supercritical (liquid) CO2, or any other suitable form.
    Type: Application
    Filed: April 20, 2023
    Publication date: October 26, 2023
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: David W. Leyshon, Sandor Nagy, Elizabeth I. Ross-Medgaarden
  • Patent number: 11590477
    Abstract: Methods of preparing titanated silica catalysts, and titanated silica catalysts. The titanated silica catalysts may include a silica support, which may include spherical beads. Methods of olefin epoxidation, which may include contacting an olefin with a titanated silica catalyst in the presence of an oxidant.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: February 28, 2023
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Sandor Nagy, Nicholas Bruschi, Elizabeth I. Ross-Medgaarden, David W. Leyshon, Barbara Kimmich
  • Publication number: 20220401934
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process utilizes added hydrogen as a diluent to extend the isomerization catalyst's lifetime and increase the yield of skeletal isomer products compared to process that utilize inert gas diluents. The methods of this disclosure can be applied to feeds containing iso-olefins (for the production of linear olefins) or linear olefins (for the production of iso-olefins).
    Type: Application
    Filed: June 3, 2022
    Publication date: December 22, 2022
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon, Kevin P. Fogarty
  • Patent number: 11440858
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process includes the steps of feeding an olefin-containing feed to a reactor at a space velocity of 1-100 hr?1 for a first period of time at a first temperature, followed by discontinuing, or stopping, the olefin-containing feed for a second period of time while maintaining the reactor at a second temperature, before resuming the flow of the olefin-containing feed for a third period of time. The methods of this disclosure increase the yield of the skeletal isomers product while reducing the production of C5+ heavy olefins. Additionally, the methods of this disclosure can be applied to feeds containing iso-olefins (for the production of linear olefins) or linear olefins (for the production of iso-olefins).
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: September 13, 2022
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon
  • Publication number: 20220135499
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process includes the steps of feeding an olefin-containing feed to a reactor having an isomerization catalyst with a small crystalline size that is less than 1 ?m in all directions. The small crystalline size increases the life of the catalyst and the yield of skeletal isomer products, as well as reducing the formation of heavy C5+ olefin byproducts, as compared to processes using conventional catalyst with crystalline sizes of 1 ?m or more.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 5, 2022
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon
  • Publication number: 20220135500
    Abstract: A skeletal isomerization process for isomerizing olefins is described. The process includes the steps of feeding an olefin-containing feed to a reactor at a space velocity of 1-100 hr?1 for a first period of time at a first temperature, followed by discontinuing, or stopping, the olefin-containing feed for a second period of time while maintaining the reactor at a second temperature, before resuming the flow of the olefin-containing feed for a third period of time. The methods of this disclosure increase the yield of the skeletal isomers product while reducing the production of C5+ heavy olefins. Additionally, the methods of this disclosure can be applied to feeds containing iso-olefins (for the production of linear olefins) or linear olefins (for the production of iso-olefins).
    Type: Application
    Filed: November 5, 2021
    Publication date: May 5, 2022
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Rick B. Watson, David W. Leyshon
  • Patent number: 11261142
    Abstract: Improved systems and methods for producing propylene from olefins including isobutylene is disclosed. The improvements combine streams containing co-produced 1-butene, 2-butene, butadiene, and heavy olefins (C5+) exiting both a metathesis reactor and a skeletal isomerization reactor in a gasoline fractionation tower to remove the heavy olefins. The C4-containing distillate from the gasoline fractionation tower is then fed to a hydroisomerization unit to form mono-olefins and 2-butene. The resulting 2-butene rich stream can then be utilized in metathesis reactions to increase the production of propylene while increasing the lifetime of the metathesis catalyst.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: March 1, 2022
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: David W. Leyshon, Rick B. Watson
  • Publication number: 20210403396
    Abstract: Improved systems and methods for producing propylene from olefins including isobutylene is disclosed. The improvements combine streams containing co-produced 1-butene, 2-butene, butadiene, and heavy olefins (C5+) exiting both a metathesis reactor and a skeletal isomerization reactor in a gasoline fractionation tower to remove the heavy olefins. The C4-containing distillate from the gasoline fractionation tower is then fed to a hydroisomerization unit to form mono-olefins and 2-butene. The resulting 2-butene rich stream can then be utilized in metathesis reactions to increase the production of propylene while increasing the lifetime of the metathesis catalyst.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 30, 2021
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: David W. Leyshon, Rick B. Watson
  • Publication number: 20210129112
    Abstract: Methods of preparing titanated silica catalysts, and titanated silica catalysts. The titanated silica catalysts may include a silica support, which may include spherical beads. Methods of olefin epoxidation, which may include contacting an olefin with a titanated silica catalyst in the presence of an oxidant.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 6, 2021
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Sandor Nagy, Nicholas Bruschi, Elizabeth I. Ross-Medgaarden, David W. Leyshon, Barbara Kimmich
  • Publication number: 20210129113
    Abstract: Methods of preparing titanated silica catalysts and titanated silica catalysts are presented. The titanated silica catalysts may include a silica support, which may include spherical beads. The spherical silica beads may have an average diameter of about 0.1 mm to about 5 mm Methods of olefin epoxidation, which may include contacting an olefin with a titanated silica catalyst in the presence of an oxidant.
    Type: Application
    Filed: November 2, 2020
    Publication date: May 6, 2021
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Sandor Nagy, Nicholas Bruschi, Elizabeth I. Ross-Medgaarden, David W. Leyshon, Barbara Kimmich
  • Patent number: 10513502
    Abstract: A propylene oxide separation system comprising a heavies distillation column configured to receive a crude propylene oxide stream and discharge a heavies purge bottoms comprising at least one impurity selected from acetone, methanol, aldehydes, aldehyde derivatives, water, heavy hydrocarbons comprising C5+, or combinations thereof, and discharge a heavies distillation column overhead stream comprising a majority of the propylene oxide entering with the crude propylene oxide stream, and a first extractive distillation column configured to receive the heavies distillation column overhead stream and a first extraction solvent stream comprising a hydrocarbon solvent, and discharge a lights purge overhead comprising at least one impurity selected from aldehydes (e.g., acetaldehyde, formaldehyde, etc.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: December 24, 2019
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Elizabeth I. Ross-Medgaarden, David W. Leyshon, Karl P. Rufener, Sunti Kongkitisupchai, Richard J. Wolff, Kimberly A. Petry
  • Patent number: 10513472
    Abstract: Methods of producing at least one of ethylene and propylene. The methods may include contacting a mixture of C4+ compounds with a catalyst to convert at least a portion of the C4+ compounds to at least one of ethylene and propylene. The catalyst can include a phosphorus treated zeolite, and the mixture of C4+ compounds can include at least one of t-butyl alcohol and methyl t-butyl ether.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: December 24, 2019
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: David W. Leyshon
  • Publication number: 20190241534
    Abstract: A propylene oxide separation system comprising a heavies distillation column configured to receive a crude propylene oxide stream and discharge a heavies purge bottoms comprising at least one impurity selected from acetone, methanol, aldehydes, aldehyde derivatives, water, heavy hydrocarbons comprising C5+, or combinations thereof, and discharge a heavies distillation column overhead stream comprising a majority of the propylene oxide entering with the crude propylene oxide stream, and a first extractive distillation column configured to receive the heavies distillation column overhead stream and a first extraction solvent stream comprising a hydrocarbon solvent, and discharge a lights purge overhead comprising at least one impurity selected from aldehydes (e.g., acetaldehyde, formaldehyde, etc.
    Type: Application
    Filed: February 5, 2019
    Publication date: August 8, 2019
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Elizabeth I. Ross-Medgaarden, David W. Leyshon, Karl P. Rufener, Sunti Kongkitisupchai, Richard J. Wolff, Kimberly A. Petry
  • Publication number: 20190127291
    Abstract: Methods of producing at least one of ethylene and propylene. The methods may include contacting a mixture of C4+ compounds with a catalyst to convert at least a portion of the C4+ compounds to at least one of ethylene and propylene. The catalyst can include a phosphorus treated zeolite, and the mixture of C4+ compounds can include at least one of t-butyl alcohol and methyl t-butyl ether.
    Type: Application
    Filed: October 19, 2018
    Publication date: May 2, 2019
    Applicant: Lyondell Chemical Technology, L.P.
    Inventor: David W. Leyshon
  • Patent number: 10233166
    Abstract: A propylene oxide separation system that comprises a distillation column, a decanter, and water wash system. The distillation column is configured to receive a crude propylene oxide stream, discharge an impurity stream that comprises methanol and water, and discharge a bottoms stream that comprises a majority of the propylene oxide entering in the crude propylene oxide stream. The decanter is configured to receive at least a portion of the impurity stream and a hydrocarbon solvent to provide for formation in the decanter of an organic phase and an aqueous phase. The organic phase comprises propylene oxide and hydrocarbon solvent, and is sent to the distillation column. The aqueous phase comprises a majority weight percent of the methanol and the water entering in the impurity stream. The water wash system is configured to receive and purge the aqueous phase from the propylene oxide separation system.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: March 19, 2019
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Xiangmin Li, Te Chang, David W. Leyshon, Walter S. Dubner, Elizabeth I. Ross-Medgaarden
  • Patent number: 9932318
    Abstract: The present disclosure relates to a method of epoxidizing an olefin to form an epoxide, the method comprising contacting an alkene(C?12) or aralkene(C?12) with a titanium silica catalyst, a peroxide, a buffer, and one or more organic solvents in a reaction mixture, wherein the one or more organic solvents comprise a first organic solvent selected from: R1—OH??(I), R2—CN??(II), R3—C(O)—R4??(III) or R5—O—R6??(IV) wherein: R1 is alkyl(C?12), aryl(C?12), aralkyl(C?12) or a substituted version of any of these groups; R2 is alkyl(C?12), aryl(C?12), aralkyl(C?12) or a substituted version of any of these groups; R3 is hydrogen, alkyl(C?6) or substituted alkyl(C?6); and R4, R5, and R6 are each independently selected from alkyl(C?12), aryl(C?12), aralkyl(C?12) or a substituted version of any of these groups, or are taken together are alkoxydiyl(C?12), alkanediyl(C?12), substituted alkoxydiyl(C?12) or substituted alkanediyl(C?12).
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: April 3, 2018
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Vu A. Dang, David W. Leyshon, Sandor Nagy, Roger A. Grey
  • Patent number: 9873648
    Abstract: Provided herein in is a method of removing phosphorus from a liquid hydrocarbon that includes the steps of (a) contacting the liquid hydrocarbon with an aqueous solution that comprises an oxidizing agent to form a reaction mixture that comprises an aqueous component and a hydrocarbon component, wherein the liquid hydrocarbon comprises at least an alkene(C4-30), and a phosphine(C?30); (b) reacting the oxidizing agent with the phosphine(C?30) to form the corresponding phosphine oxide(C?30); and (c) separating the aqueous component from the hydrocarbon component, thereby removing the phosphine oxide(C?30) from the liquid hydrocarbon.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: January 23, 2018
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: David W. Leyshon, Lei Zhang, Robert Bruce Maskell, Daniel F. White
  • Publication number: 20170137394
    Abstract: A propylene oxide separation system that comprises a distillation column, a decanter, and water wash system. The distillation column is configured to receive a crude propylene oxide stream, discharge an impurity stream that comprises methanol and water, and discharge a bottoms stream that comprises a majority of the propylene oxide entering in the crude propylene oxide stream. The decanter is configured to receive at least a portion of the impurity stream and a hydrocarbon solvent to provide for formation in the decanter of an organic phase and an aqueous phase. The organic phase comprises propylene oxide and hydrocarbon solvent, and is sent to the distillation column. The aqueous phase comprises a majority weight percent of the methanol and the water entering in the impurity stream. The water wash system is configured to receive and purge the aqueous phase from the propylene oxide separation system.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Applicant: Lyondell Chemical Technology, L.P.
    Inventors: Xiangmin Li, Te Chang, David W. Leyshon, Walter S. Dubner, Elizabeth I. Ross-Medgaarden
  • Patent number: 9643943
    Abstract: The present disclosure relates to a method of preparing propylene oxide comprising the steps: (a) oxidizing alpha-methylbenzyl alcohol with air to form a first reaction mixture comprising hydrogen peroxide and acetophenone; (b) reacting propylene with the first reaction mixture in the presence of a catalyst to form a second reaction mixture comprising propylene oxide; (c) separating the propylene oxide from the second reaction mixture to form a third reaction mixture; (d) heating the third reaction mixture to decompose hydrogen peroxide, whereby a fourth reaction mixture is formed; (e) hydrogenating the acetophenone in the fourth reaction mixture with hydrogen to form a fifth reaction mixture comprising alpha-methylbenzyl alcohol; and (f) separating alpha-methylbenzyl alcohol from the fifth reaction mixture and returning the methyl benzyl alcohol to step (a).
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: May 9, 2017
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Vu A. Dang, David W. Leyshon, Sandor Nagy, Roger A. Grey
  • Patent number: 9593090
    Abstract: A propylene oxide separation system that comprises a distillation column, a decanter, and water wash system. The distillation column is configured to receive a crude propylene oxide stream, discharge an impurity stream that comprises methanol and water, and discharge a bottoms stream that comprises a majority of the propylene oxide entering in the crude propylene oxide stream. The decanter is configured to receive at least a portion of the impurity stream and a hydrocarbon solvent to provide for formation in the decanter of an organic phase and an aqueous phase. The organic phase comprises propylene oxide and hydrocarbon solvent, and is sent to the distillation column. The aqueous phase comprises a majority weight percent of the methanol and the water entering in the impurity stream. The water wash system is configured to receive and purge the aqueous phase from the propylene oxide separation system.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 14, 2017
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Xiangmin Li, Te Chang, David W. Leyshon, Walter S. Dubner, Elizabeth I. Ross-Medgaarden