Patents by Inventor Davide Sacchetto

Davide Sacchetto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220334449
    Abstract: An electro-optic modulator for a waveguide is presented. The electro-optic modulator includes a first semiconductor layer, a second semiconductor layer, a dielectric layer interposed between the second semiconductor layer and the first semiconductor layer and a coupling layer for coupling a guided mode of the waveguide to at least one of the first semiconductor layer and the second semiconductor layer. The electro-optic modulator is configured to induce a modulation on the guided mode of the waveguide by changing a refractive index in response to a voltage applied between the first semiconductor layer and the second semiconductor layer.
    Type: Application
    Filed: September 2, 2020
    Publication date: October 20, 2022
    Applicant: LiGenTec SA
    Inventors: Davide Sacchetto, Michael Zervas, Michael Geiselmann
  • Publication number: 20220155522
    Abstract: An optical mode-size converter is presented, which includes a guiding portion, wherein at least a portion of the guiding portion extends between a first end and a second end along a first path, a first strip with a first refractive index, and a second strip with a second refractive index. The first strip and the second strip are embedded within the guiding portion extending along the first path such that a first optical mode received at the first end reaches the first strip before the second strip and such that the second strip extends to the second end. The first refractive index and the second refractive index are higher than a refractive index of the guiding portion, and a section of the first strip and a section of the second strip overlap to form an evanescent coupling region, such that converter is responsive to a first optical mode received at the first end to convert the first optical mode into a second optical mode with a smaller mode size along the first path towards the second end.
    Type: Application
    Filed: March 13, 2020
    Publication date: May 19, 2022
    Applicant: LiGenTec SA
    Inventors: Michael Geiselmann, Michael Zervas, Davide Sacchetto, Anton Stroganov
  • Publication number: 20160322101
    Abstract: A bipolar resistive switching device including an electrically conductive bottom electrode, a stack of transition metal oxides layers, a number of transition metal oxide layers being equal or greater than 2, the stack including: at least one MOx layer, at least one oxygen gettering layer NOy, wherein the resistive switching device further includes an electrically conductive top electrode.
    Type: Application
    Filed: June 24, 2016
    Publication date: November 3, 2016
    Inventors: Davide Sacchetto, Shashi Kanth Bobba, Pierre-Emmanuel Julien Marc Gaillardon, Yusuf Leblebici, Giovanni De Micheli, Tugba Demirci
  • Patent number: 9412940
    Abstract: A bipolar resistive switching device (RSM device, FIG. 35) comprises an electrically conductive bottom electrode (BE, FIG. 35); a stack of transition metal oxides layers (RSM, FIG. 35), a number of transition metal oxide layers (RSO, FIG. 35) being equal or greater than 2, the stack comprising: at least one MOx layer (RSOA, FIG. 35), at least one oxygen gettering layer NOy (RSOB, FIG. 35). The resistive switching device further comprises an electrically conductive top electrode (TE, FIG. 35).
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: August 9, 2016
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Davide Sacchetto, Shashi Kanth Bobba, Pierre-Emmanuel Julien Marc Gaillardon, Yusuf Leblebici, Giovanni De Micheli, Tugba Demirci
  • Patent number: 9252252
    Abstract: This invention describes a novel electronic device consisting of one—or more—vertically stacked gate-all-around silicon nanowire field effect transistor (SNWFET) with two independent gate electrodes. One of the two gate electrodes, acting on the central section of the transistor channel, controls on/off behavior of the channel. The second gate, acting on the regions in proximity to the source and the drain of the transistor, defines the polarity of the devices, i.e. p or n type. The electric field of the second gate acts either at the interface of the nanowire-to-source/drain region or anywhere in close proximity to the depleted region of the SiNW body, modulating the bending of the Schottky barriers at the contacts, eventually screening one type of charge carrier to pass through the channel of the transistor. This is achieved by controlling the majority carriers passing through the transistor channel by regulating the Schottky barrier thicknesses at the source and drain contacts.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: February 2, 2016
    Assignee: ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL)
    Inventors: Giovanni De Micheli, Yusuf Leblebici, Michele De Marchi, Davide Sacchetto
  • Publication number: 20150200363
    Abstract: A bipolar resistive switching device (RSM device, FIG. 35) comprises an electrically conductive bottom electrode (BE, FIG. 35); a stack of transition metal oxides layers (RSM, FIG. 35), a number of transition metal oxide layers (RSO, FIG. 35) being equal or greater than 2, the stack comprising: at least one MOx layer (RSOA, FIG. 35), at least one oxygen gettering layer NOy (RSOB, FIG. 35). The resistive switching device further comprises an electrically conductive top electrode (TE, FIG. 35).
    Type: Application
    Filed: July 19, 2013
    Publication date: July 16, 2015
    Inventors: Davide Sacchetto, Shashi Kanth Bobba, Pierre-Emmanuel Julien Marc Gaillardon, Yusuf Leblebici, Giovanni De Micheli, Tugba Demirci
  • Publication number: 20130313524
    Abstract: This invention describes a novel electronic device consisting of one—or more—vertically stacked gate-all-around silicon nanowire field effect transistor (SNWFET) with two independent gate electrodes. One of the two gate electrodes, acting on the central section of the transistor channel, controls on/off behavior of the channel. The second gate, acting on the regions in proximity to the source and the drain of the transistor, defines the polarity of the devices, i.e. p or n type. The electric field of the second gate acts either at the interface of the nanowire-to-source/drain region or anywhere in close proximity to the depleted region of the SiNW body, modulating the bending of the Schottky barriers at the contacts, eventually screening one type of charge carrier to pass through the channel of the transistor. This is achieved by controlling the majority carriers passing through the transistor channel by regulating the Schottky barrier thicknesses at the source and drain contacts.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Giovanni De Micheli, Yusuf Leblebici, Michele De Marchi, Davide Sacchetto