Patents by Inventor Davis Lee

Davis Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200126757
    Abstract: Provided herein are approaches for in-situ plasma cleaning of ion beam optics. In one approach, a system includes a component (e.g., a beam-line component) of an ion implanter processing chamber. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current are applied to one or more conductive beam optics of the component, individually, to selectively generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the beam-line component, and a vacuum pump for adjusting pressure of an environment of the beam-line component.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 23, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Patent number: 10625097
    Abstract: The invention comprises a method for treating a tumor of a patient with positively charged particles in a treatment room, comprising the steps of: (1) controlling a cancer therapy treatment system with a main controller, the main controller comprising hardware and software; (2) generating at least one image of the tumor using at least one imaging system controlled by the main controller; (3) using the at least one image and a software coded set of radiation treatment directives, the main controller auto-generating a radiation treatment plan; and (4) the main controller auto-delivering the positively charged particles, via a beam transport system and a nozzle system, from a synchrotron to the tumor according to the radiation treatment plan.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 21, 2020
    Inventors: Jillian Reno, Mark R. Amato, Susan L. Michaud, James P. Bennett, Nick Ruebel, W. Davis Lee
  • Patent number: 10589128
    Abstract: The invention comprises a method and apparatus for treating a tumor of a patient using positively charged particles, comprising the steps of: (1) providing an approved current version of a radiation treatment plan for treatment of the tumor using the positively charged particles; (2) implementing the current version of the radiation treatment plan using a cancer therapy system comprising a controller linked to a synchrotron; (3) upon identifying an object, using a set of fiducial indicators, in a treatment vector of the radiation treatment plan: generating a modified version of radiation treatment plan and receiving medical doctor approval of the modified version of the radiation treatment plan, the modified version of the radiation plan becoming the current version of the radiation treatment plan; and (4) repeating the steps of implementing and identifying until completion of treatment of the tumor using the positively charged particles.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: March 17, 2020
    Inventors: Susan L. Michaud, Jillian Reno, Nick Ruebel, Mark R. Amato, W. Davis Lee, James P. Bennett
  • Patent number: 10555710
    Abstract: The invention comprises a method and apparatus for imaging a tumor with X-rays while, simultaneously or alternatingly, treating or imaging the tumor with positively charged particles. An X-ray imaging system, such as one or two sets of a cone beam X-ray source coupled to an X-ray detector, is rotatable about a first axis and a patient. The X-ray imaging system is positioned off axis a path of charged particles delivered through an exit port of a nozzle system from a synchrotron and does not block a path of the positively charged particles from the exit nozzle to the patient or an imaging path from the patient to a scintillation detector. Fiducial indicators are used to confirm an unobstructed path of the positively charged particles in a treatment room comprising many movable elements, such as the X-ray imaging system and a patient positioning system/couch.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: February 11, 2020
    Inventors: James P. Bennett, W. Davis Lee
  • Patent number: 10556126
    Abstract: The invention comprises a method for generating a procedure for treating a tumor of a patient using positively charged particles, comprising the steps of: (1) providing a set of treatment goal specifications; (2) generating tomographic images of the tumor using a first set of groups of the positively charge particles delivered from a synchrotron; and (3) a computer implemented algorithm automatically generating a tumor radiation treatment plan, of the tumor using the positively charged particles, using the set of treatment goal specifications and the tomographic images. Optionally, the method automatically updates the radiation treatment plan upon: a detected movement of the tumor relative to surrounding patient constituents and/or upon detection of a previously unforeseen intervening object in a treatment beam path.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: February 11, 2020
    Inventors: Mark R. Amato, Susan L. Michaud, James P. Bennett, Jillian Reno, W. Davis Lee, Nick Ruebel
  • Publication number: 20200038681
    Abstract: The invention comprises a method and apparatus for scanning charged particles in a cancer therapy system, comprising the steps of: (1) providing a first and second dipole magnet system and a gap, the gap comprising a common gap length, along a path of the charged particles, within both the first and second dipole magnet systems, the gap comprising a progressively increasing x/y-plane cross-section area from an entrance area of the charged particles into the double dipole magnet system to an exit area of the double dipole magnet system, the x/y-plane perpendicular to a z-axis from a center of the entrance area to a center of the exit area; (2) scanning the positively charged particles along a first axis of the x/y-plane using the first dipole magnet system; and (3) scanning the positively charged particles along a second axis of the x/y-plane using the second dipole magnet system.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Faye Hendley Elgart, Nick Ruebel, Mark R. Amato, Nandish Desai, W. Davis Lee
  • Publication number: 20200037825
    Abstract: The invention comprises a method and apparatus for delivery of a product, such as whipped cream, from a pressurized container containing a deformable bladder, the deformable bladder separating a main compartment of the pressurized container into a pressure reserve zone and a pressurized delivery zone, where a membrane in the pressure reserve zone initially separates first chemical reagents from second chemical reagents. Upon a force creating an opening in the membrane, a reaction of the chemical reagents forms a gas, which alters a volume of the deformable bladder and the volume of the pressurized delivery zone with a corresponding increase in pressure of a deliverable gas in the pressure delivery zone. A resulting increased pressure of the deliverable gas, which permeates cream, maintains quality of delivered whipped cream from the pressurized container.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Inventors: Christian T. Metcalfe, W. Davis Lee
  • Patent number: 10549470
    Abstract: A method and system for forming a self-sealing volume includes an elastomeric composite structure. The structure includes layers of a cast polyurethane derived from a neat polyurethane monomer reaction mixture that does not substantially react at room temperature. The polyurethane monomer reaction layer includes a reaction product of an organic polyisocyanate and a reactive hydrogen-containing material reacted with a mixture of a monomeric polyol and polymeric polyols. The structure may further include one or more layers of a fabric that have been precoated with an aliphatic polyurethane, and one or more sealing layers. A fuel impermeable inner liner may be positioned in an inner region. The sealing layers may comprise at least one of partially vulcanized natural rubber (NR), polyisoprene (IR), styrene butadiene (SBR), or a blend of SBR with NR or IR. A dimensionally correct, self-sealing volume may be created by inflating the volume during its cure.
    Type: Grant
    Filed: February 25, 2017
    Date of Patent: February 4, 2020
    Assignee: ROBERTSON FUEL SYSTEMS, L.L.C.
    Inventors: Matthew Whipple, Jim McElhose, Davis Lee, Ruben Lopez
  • Patent number: 10549124
    Abstract: The invention comprises a method and apparatus for treating a tumor with protons using multiple beamline positions not having an isocenter, including the steps of: (1) delivering the protons from a synchrotron along a redirectable beam transport path to yield a plurality of incident vectors, each of the plurality of incident vectors directed toward the treatment room and (2) redirecting the protons traveling along each of the plurality of incident vectors, with an output nozzle, to the tumor, where a first vector, of the plurality of incident vectors, comprises a first direction intersecting the tumor and where a second vector, of the plurality of incident vectors, comprises a second direction passing by the tumor without entering the tumor. The step of redirecting directs the protons traveling along the first and second incident vectors, respectively, to a first and second path intersecting a front and the back of the tumor.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 4, 2020
    Inventors: W. Davis Lee, Jillian Reno, James P. Bennett
  • Patent number: 10548551
    Abstract: The invention comprises a method or apparatus for tomographically imaging a sample, such as a tumor of a patient, using positively charged particles. Position, energy, and/or vectors of the positively charged particles are determined using a plurality of scintillators, such as layers of chemically distinct scintillators where each chemically distinct scintillator emits photons of differing wavelengths upon energy transfer from the positively charged particles. Knowledge of position of a given scintillator type and a color of the emitted photon from the scintillator type allows a determination of residual energy of the charged particle energy in a scintillator detector. Optionally, a two-dimensional detector array additionally yields x/y-plane information, coupled with the z-axis energy information, about state of the positively charged particles.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: February 4, 2020
    Inventors: W. Davis Lee, Mark R. Amato
  • Patent number: 10532228
    Abstract: The invention comprises a method and apparatus for using a multi-layer multi-color scintillation based detector element to image a tumor of a patient using a process of determining residual energies of positively charged particles after passing through the patient, the process comprising the steps of: (1) transmitting the positively charged particles at known energies through the patient and into a multi-layer detector element; (2) detecting first and second secondary photons, resultant from passage of the positively charged particles, respectively from a first layer of a first scintillation material and a second layer of a second scintillation material at two respective layer depths, where the first wavelength range differs from the second wavelength range; (4) determining residual energies of the positively charged particles, using output from the step of detecting; and (5) relating the residual energies to body densities to generate an image.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: January 14, 2020
    Inventors: Maureen Petterson, W. Davis Lee
  • Patent number: 10518109
    Abstract: The invention comprises a method and apparatus for determining a radiation beam treatment path to a tumor, comprising the steps of: (1) delivering charged particles from an accelerator, along a first beam transport path, through an output nozzle, and along a treatment path to the tumor relative to a calibrated reference beam path from the output nozzle toward a patient position and (2) prior to the step of delivering, a main controller verifying an unobstructed linear path of the treatment path using a set of fiducial indicators positioned at least: on a first element physically affixed and co-movable with the output nozzle and on a moveable object in the treatment room. Optionally, voxels of the treatment beam path and potentially obstructing objects are defined in the treatment room using an axis system relative to the calibrated reference beam path and a reference beam point.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: December 31, 2019
    Inventors: Jillian Reno, Susan L. Michaud, Nick Ruebel, Mark R. Amato, W. Davis Lee, James P. Bennett
  • Patent number: 10522330
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component having one or more conductive beam optics. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current may be applied to the conductive beam optics of the component, in parallel, to selectively (e.g., individually) generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the component, and a vacuum pump for adjusting pressure of an environment of the component.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 31, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Publication number: 20190374178
    Abstract: The invention comprises a method and apparatus for imaging a tumor with X-rays while, simultaneously or alternatingly, treating or imaging the tumor with positively charged particles. An X-ray imaging system, such as one or two sets of a cone beam X-ray source coupled to an X-ray detector, is rotatable about a first axis and a patient. The X-ray imaging system is positioned off axis a path of charged particles delivered through an exit port of a nozzle system from a synchrotron and does not block a path of the positively charged particles from the exit nozzle to the patient or an imaging path from the patient to a scintillation detector. Fiducial indicators are used to confirm an unobstructed path of the positively charged particles in a treatment room comprising many movable elements, such as the X-ray imaging system and a patient positioning system/couch.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 12, 2019
    Inventors: James P. Bennett, W. Davis Lee
  • Publication number: 20190366125
    Abstract: The invention comprises a method and apparatus for using a multi-layer multi-color scintillation based detector element to image a tumor of a patient using a process of determining residual energies of positively charged particles after passing through the patient, the process comprising the steps of: (1) transmitting the positively charged particles at known energies through the patient and into a multi-layer detector element; (2) detecting first and second secondary photons, resultant from passage of the positively charged particles, respectively from a first layer of a first scintillation material and a second layer of a second scintillation material at two respective layer depths, where the first wavelength range differs from the second wavelength range; (4) determining residual energies of the positively charged particles, using output from the step of detecting; and (5) relating the residual energies to body densities to generate an image.
    Type: Application
    Filed: August 12, 2019
    Publication date: December 5, 2019
    Inventors: Maureen Petterson, W. Davis Lee
  • Publication number: 20190358471
    Abstract: The invention comprises a method and apparatus for treating a tumor of a patient, in a beam treatment center comprising a floor, with positively charged particles, comprising: (1) a synchrotron mounted to an elevated floor section above the floor of the beam treatment center; (2) a beam transport system, comprising: at least three fixed-position beam transport lines, where none of the synchrotron and the beam transport system penetrate through the floor of the beam treatment center; (3) the positively charged particles transported from the synchrotron, through the beam transport system, to a position above a patient positioning system during use; and (4) an optional repositionable nozzle system connected to a first, second, and third fixed-position beam transport line at a first, second, and third time, respectively, where the nozzle track forms an arc of a circle and the repositionable nozzle system moves along the nozzle track.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Daniel J. Raymond, W. Davis Lee, James P. Bennett
  • Publication number: 20190351259
    Abstract: The invention comprises a method and apparatus for reducing a kinetic energy of positively charged particles, comprising the steps of: (1) transporting the positively charged particles from an accelerator into an exit nozzle system along a beam line; (2) providing a first chamber of the exit nozzle system, the first chamber comprising: an incident side comprising an incident aperture, an exit side comprising an exit aperture, and a beam path of the positively charged particles from the incident aperture to the exit aperture; (3) filling the beam path in the chamber with a liquid; and (4) using the liquid to reduce the kinetic energy of the positively charged particles. The kinetic energy dissipater is optionally used in combination with a proton therapy cancer treatment system and/or a proton tomography imaging system.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: W. Davis Lee, Mark R. Amato
  • Publication number: 20190351258
    Abstract: The invention comprises a method and apparatus for steering/scanning charged particles, comprising: a double dipole scanning system, comprising: (1) a beam path chamber comprising an entrance side and an exit side, the entrance side comprising a smaller area than the exit side; (2) a first dipole magnet, the first dipole magnet comprising a first coil and a third coil on first opposite sides of the beam path chamber; and (3) a second dipole magnet, the second dipole magnet comprising a second coil and a fourth coil on second opposite sides of the beam path chamber, the beam path chamber further comprising a truncated square/rectangle pyramid shape, the smaller entrance side of the charged particles comprising a top of the truncated pyramid shape, the exit side of the charged particles comprising a larger bottom of the truncated pyramid shape.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Faye Hendley Elgart, Nick Ruebel, Mark R. Amato, Nandish Desai, W. Davis Lee
  • Patent number: 10471676
    Abstract: A fabric coated or impregnated with an elastomeric material may include a polyurethane dispersion layer combined with a sealant. The fabric may be applied in such a fashion so as to enable the elimination of solvent or fluid that is associated with the elastomer. The polyurethane dispersion layer generally comprises an elastomeric material dispersed or dissolved in a liquid medium, such as, but not limited to, water. At the same time, the integrity of the elastomeric composite which is formed from the dispersion and sealant layers may be maintained in order to minimize the presence of air voids and pockets. It has thus been realized that in doing so the performance of the self-sealing volume is dramatically improved. This method of construction usually may be accomplished without significantly adding to the weight or thickness of the volume and without affecting the outer dimension of the self-sealing volume.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: November 12, 2019
    Assignee: ROBERTSON FUEL SYSTEMS, L.L.C.
    Inventors: Matthew Whipple, Davis Lee
  • Patent number: 10376717
    Abstract: The invention comprises a method and apparatus for treating a tumor using positively charged particles having passed through an intervening object, comprising the steps of: predetermining an energy reduction of the positively charged particles resultant from the positively charged particles traversing the intervening object along a beam treatment path as a function of relative rotation of the patient and the beam treatment path; generating a radiation treatment plan adjusting energy of the positively charged particles delivered from the synchrotron to the intervening object to yield a desired beam treatment energy of the positively charged particles entering the tumor after compensating for the energy reduction; and optionally detecting a set of the positively charged particles after traversing the intervening object to yield a signal, where the signal is used with knowledge of energy of the positively charged particles exiting the synchrotron to pre-determine the energy reduction along the beam treatment pat
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: August 13, 2019
    Inventors: James P. Bennett, Susan L. Michaud, Mark R. Amato, Jillian Reno, W. Davis Lee, Nick Ruebel