Patents by Inventor Dax CRUM

Dax CRUM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230116170
    Abstract: Gate-all-around integrated circuit structures having high mobility, and methods of fabricating gate-all-around integrated circuit structures having high mobility, are described. For example, an integrated circuit structure includes a silicon nanowire or nanoribbon. An N-type gate stack is around the silicon nanowire or nanoribbon, the N-type gate stack including a compressively stressing gate electrode. A first N-type epitaxial source or drain structure is at a first end of the silicon nanowire or nanoribbon. A second N-type epitaxial source or drain structure is at a second end of the silicon nanowire or nanoribbon. The silicon nanowire or nanoribbon has a <110> plane between the first N-type epitaxial source or drain structure and the second N-type epitaxial source or drain structure.
    Type: Application
    Filed: November 28, 2022
    Publication date: April 13, 2023
    Inventors: Roza KOTLYAR, Rishabh MEHANDRU, Stephen CEA, Biswajeet GUHA, Dax CRUM, Tahir GHANI
  • Patent number: 11569370
    Abstract: An integrated circuit structure comprises a semiconductor fin protruding through a trench isolation region above a substrate. A gate structure is over the semiconductor fin. A plurality of vertically stacked nanowires is through the gate structure, wherein the plurality of vertically stacked nanowires includes a top nanowire adjacent to a top of the gate structure, and a bottom nanowire adjacent to a top of the semiconductor fin. A dielectric material covers only a portion of the plurality of vertically stacked nanowires outside the gate structure, such that one or more one of the plurality of vertically stacked nanowires starting with the top nanowire is exposed from the dielectric material. Source and drain regions are on opposite sides of the gate structure connected to the exposed ones of the plurality of vertically stacked nanowires.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: January 31, 2023
    Assignee: Intel Corporation
    Inventors: Leonard P. Guler, Vivek Thirtha, Shu Zhou, Nitesh Kumar, Biswajeet Guha, William Hsu, Dax Crum, Oleg Golonzka, Tahir Ghani, Christopher Kenyon
  • Publication number: 20220416024
    Abstract: Gate-all-around integrated circuit structures having underlying dopant-diffusion blocking layers are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin. The fin includes a dopant diffusion blocking layer on a first semiconductor layer, and a second semiconductor layer on the dopant diffusion blocking layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 6, 2022
    Publication date: December 29, 2022
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Dax CRUM, Patrick KEYS, Tahir GHANI, Susmita GHOSE, Ted COOK, JR.
  • Patent number: 11538806
    Abstract: Gate-all-around integrated circuit structures having high mobility, and methods of fabricating gate-all-around integrated circuit structures having high mobility, are described. For example, an integrated circuit structure includes a silicon nanowire or nanoribbon. An N-type gate stack is around the silicon nanowire or nanoribbon, the N-type gate stack including a compressively stressing gate electrode. A first N-type epitaxial source or drain structure is at a first end of the silicon nanowire or nanoribbon. A second N-type epitaxial source or drain structure is at a second end of the silicon nanowire or nanoribbon. The silicon nanowire or nanoribbon has a <110> plane between the first N-type epitaxial source or drain structure and the second N-type epitaxial source or drain structure.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 27, 2022
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Rishabh Mehandru, Stephen Cea, Biswajeet Guha, Dax Crum, Tahir Ghani
  • Patent number: 11469299
    Abstract: Gate-all-around integrated circuit structures having underlying dopant-diffusion blocking layers are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin. The fin includes a dopant diffusion blocking layer on a first semiconductor layer, and a second semiconductor layer on the dopant diffusion blocking layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 11, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Biswajeet Guha, Dax Crum, Patrick Keys, Tahir Ghani, Susmita Ghose, Ted Cook, Jr.
  • Publication number: 20200411661
    Abstract: An integrated circuit structure comprises a semiconductor fin protruding through a trench isolation region above a substrate. A gate structure is over the semiconductor fin. A plurality of vertically stacked nanowires is through the gate structure, wherein the plurality of vertically stacked nanowires includes a top nanowire adjacent to a top of the gate structure, and a bottom nanowire adjacent to a top of the semiconductor fin. A dielectric material covers only a portion of the plurality of vertically stacked nanowires outside the gate structure, such that one or more one of the plurality of vertically stacked nanowires starting with the top nanowire is exposed from the dielectric material. Source and drain regions are on opposite sides of the gate structure connected to the exposed ones of the plurality of vertically stacked nanowires.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Leonard P. GULER, Vivek THIRTHA, Shu ZHOU, Nitesh KUMAR, Biswajeet GUHA, William HSU, Dax CRUM, Oleg GOLONZKA, Tahir GHANI, Christopher KENYON
  • Publication number: 20200105753
    Abstract: Gate-all-around integrated circuit structures having high mobility, and methods of fabricating gate-all-around integrated circuit structures having high mobility, are described. For example, an integrated circuit structure includes a silicon nanowire or nanoribbon. An N-type gate stack is around the silicon nanowire or nanoribbon, the N-type gate stack including a compressively stressing gate electrode. A first N-type epitaxial source or drain structure is at a first end of the silicon nanowire or nanoribbon. A second N-type epitaxial source or drain structure is at a second end of the silicon nanowire or nanoribbon. The silicon nanowire or nanoribbon has a <110> plane between the first N-type epitaxial source or drain structure and the second N-type epitaxial source or drain structure.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Roza KOTLYAR, Rishabh MEHANDRU, Stephen CEA, Biswajeet GUHA, Dax CRUM, Tahir GHANI
  • Publication number: 20200105872
    Abstract: Gate-all-around integrated circuit structures having underlying dopant-diffusion blocking layers are described. For example, an integrated circuit structure includes a vertical arrangement of horizontal nanowires above a fin. The fin includes a dopant diffusion blocking layer on a first semiconductor layer, and a second semiconductor layer on the dopant diffusion blocking layer. A gate stack is around the vertical arrangement of horizontal nanowires. A first epitaxial source or drain structure is at a first end of the vertical arrangement of horizontal nanowires. A second epitaxial source or drain structure is at a second end of the vertical arrangement of horizontal nanowires.
    Type: Application
    Filed: September 28, 2018
    Publication date: April 2, 2020
    Inventors: Glenn GLASS, Anand MURTHY, Biswajeet GUHA, Dax CRUM, Patrick KEYS, Tahir GHANI, Susmita GHOSE, Ted COOK, JR.