Patents by Inventor Dayong Li

Dayong Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9150441
    Abstract: A sewage treatment apparatus comprises a first stage equipment for treating sewage feed to obtain a first effluent and a second stage equipment for treating the first effluent to obtain a second effluent. The second stage equipment comprises a mixer (VI) for mixing the first effluent and a flocculation agent to obtain the first effluent containing the flocculation agent and a flocculation-clarification equipment (VII) comprises a first flocculation reaction chamber (A), into which the first effluent containing the flocculation agent is entered and subjected to flocculation reaction to form a mixture of water and dreg; a first separation chamber (C), into which the mixture of water and dreg from the first flocculation reaction chamber (A) is entered and separated to obtain a first part of the second effluent and a first dreg; and a second separation chamber (D), into which part of the first dreg is entered and separated to obtain a second part of the second effluent and a second dreg.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: October 6, 2015
    Inventors: Jinmin Li, Liankui Zhou, Dayong Li
  • Publication number: 20150168696
    Abstract: An object of the present invention is to provide a low-cost, miniature, wide-angle high-zoom-ratio zoom lens that has high imaging performance, and an imaging apparatus equipped with the zoom lens. To achieve the object, a zoom lens including a first lens group having positive refracting power, a second lens group having negative refracting power and a third lens group having positive refracting power in order from an object side in which a lens group P having positive refracting power is arranged closer to an image plane side than the third lens group.
    Type: Application
    Filed: December 10, 2014
    Publication date: June 18, 2015
    Inventors: Yoshito Iwasawa, Dayong Li
  • Publication number: 20150166381
    Abstract: The present invention relates to an apparatus for biological sewage treatment, including a concentrated mixed liquor driving device that uses a gas to drive a concentrated mixed liquor to flow. The present invention further relates to a method for biological sewage treatment, including a step of using a gas to drive a concentrated mixed liquor to flow. The gas can be an aeration gas, especially an oxygen-containing aeration gas after aeration treatment. The apparatus and method of the present invention can sufficiently utilize the energy and oxygen of the aeration gas, so that the energy consumption and maintenance cost of whole apparatus are reduced, biological sewage treatment effects are improved, and sludge floating is prevented. In addition, the apparatus of present invention has advantages of high performance, energy saving, high reliability, and good movability.
    Type: Application
    Filed: July 5, 2013
    Publication date: June 18, 2015
    Inventors: Jinmin LI, Liankui ZHOU, Dayong LI
  • Patent number: 8932466
    Abstract: The present invention provides a method for sludge treatment, comprising the following steps: (1) mixing a sludge feed from a sewage biotreatment process with a first mixed liquor to obtain a second mixed liquor; (2) subjecting the second mixed liquor to an oxygen-supplying process to obtain a third mixed liquor; (3) subjecting the third mixed liquor to an anoxic process to obtain a fourth mixed liquor; (4) separating the fourth mixed liquor to obtain a supernatant liquid and a first concentrated mixed liquor; (5) discharging the supernatant liquid, and returning at least a part of the first concentrated mixed liquor as the first mixed liquor to the step (1), wherein the amount of sludge of the first concentrated mixed liquor that does not return to the step (1) is less than the amount of sludge of the sludge feed. The present invention further relates to the use of the method for sludge treatment in sewage treatment. The method for sludge treatment can achieve a long term stable run without sludge discharge.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: January 13, 2015
    Inventors: Jinmin Li, Liankui Zhou, Dayong Li
  • Patent number: 8810918
    Abstract: Wide-angle large-aperture zoom lens provides a field angle greater than 75° at the wide-angle end and a variable magnification power of 2.5 or greater, and can downsize a compensation mechanism for image blur due to hand tremors. The zoom lens includes a first lens group LG1 of positive refractive power, a second lens group LG2 of negative refractive power, a third lens group LG3 of positive refractive power, and a fourth lens group LG4 of positive refractive power, all arranged in sequence from the closest to an object to the closest to an imaging plane, and permits magnification power to vary by varying clearances between adjacent ones of the first lens group LG1 to the fourth lens group LG4. Part of the lens pieces in the third lens group is moved orthogonally to the optical axis to compensate for image blur due to hand tremors.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: August 19, 2014
    Assignee: Tamron Co., Ltd.
    Inventor: Dayong Li
  • Publication number: 20140218800
    Abstract: A zoom lens includes sequentially from an object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a negative refractive power. The zoom lens varies the interval between the lens groups to perform zooming; shifts the second lens group in a direction substantially orthogonal to the optical axis to correct image blur occurring with optical system vibrations; and satisfies given conditions, enabling a compact size and a high zoom ratio to be achieved while improving imaging performance.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicants: SONY CORPORATION, TAMRON CO., LTD.
    Inventors: Dayong Li, Daisuke Kuroda, Takuya Kato
  • Patent number: 8531767
    Abstract: A zoom lens includes, sequentially from an object side, a first lens group having a positive refractive power; a second lens group having a negative refractive power; a third lens group having a positive refractive power; and a fourth lens group having a positive refractive power. Zoom is performed by moving the second and the third lens groups in a direction along an optical axis. The fourth lens group consists of, sequentially from the object side, a front group having a positive refractive power, an intermediate group configured by a cemented lens formed by a positive lens and a negative lens and having an overall refractive power that is negative, and a rear group having a positive refractive power. Blur is corrected by moving the intermediate group in a direction that is substantially orthogonal to the optical axis.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 10, 2013
    Assignee: Tamron Co., Ltd.
    Inventor: Dayong Li
  • Patent number: 8531777
    Abstract: A zoom lens includes, sequentially from an object side, a first lens group having a positive refractive power; a second lens group having negative refractive power; a third lens group having a positive refractive power; and a fourth lens group having a positive refractive power. The third lens group includes, sequentially from the object side, a front group having a positive refractive power and a rear group having a negative refractive power. Zoom is performed by moving the second lens group and the third lens group in a direction along an optical axis, and by integrally moving the front group and the rear group in a direction along the optical axis. Focusing is preformed by moving the front group in a direction along the optical axis.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 10, 2013
    Assignee: Tamron Co., Ltd.
    Inventor: Dayong Li
  • Patent number: 8498059
    Abstract: The present invention is a variable power zoom lens that is suitable to APS-format single-lens reflex cameras. The zoom lens has the foremost or first lens group G1 of positive refractivity, the second lens group G2 of negative refractivity, the third lens group G3 of positive refractivity, and the fourth lens group G4 of positive refractivity disposed in sequence from a position closer to the object to photograph toward the image plane. The third lens group G3 has a front lens subset G3F of positive refractivity and a back lens subset G3B, and the back lens subset G3B alone is moved orthogonal to the optical axis to correct a blur of an image on the image plane caused by a shake of photographer's hands.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 30, 2013
    Assignee: Tamron Co., Ltd.
    Inventor: Dayong Li
  • Publication number: 20130050844
    Abstract: Wide-angle large-aperture zoom lens provides a field angle greater than 75° at the wide-angle end and a variable magnification power of 2.5 or greater, and can downsize a compensation mechanism for image blur due to hand tremors. The zoom lens includes a first lens group LG1 of positive refractive power, a second lens group LG2 of negative refractive power, a third lens group LG3 of positive refractive power, and a fourth lens group LG4 of positive refractive power, all arranged in sequence from the closest to an object to the closest to an imaging plane, and permits magnification power to vary by varying clearances between adjacent ones of the first lens group LG1 to the fourth lens group LG4. Part of the lens pieces in the third lens group is moved orthogonally to the optical axis to compensate for image blur due to hand tremors.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 28, 2013
    Applicant: Tamron Co., Ltd.
    Inventor: Dayong LI
  • Publication number: 20130050827
    Abstract: A zoom lens includes sequentially from an object side, a first lens section G11 having a negative refractive power and a second lens section G12 having a positive refractive power. The first lens section G11 includes sequentially from the object side, a negative lens L111, a negative lens L112, and a positive lens L113. Both surface of the negative lens L112 are aspheric. The second lens section G12 includes sequentially from the object side, a front group G12F having a positive refractive power and a rear group G12R having a positive refractive power. Both surfaces of a negative lens L126 included in the rear group G12R are aspheric. The zoom lens can maintain high imaging performance while achieving size reductions and wide angle views by satisfying given conditions.
    Type: Application
    Filed: July 9, 2012
    Publication date: February 28, 2013
    Inventor: Dayong Li
  • Patent number: 8305695
    Abstract: The present invention is directed to high magnification compact zoom lenses that are reduced in diameter of groups of lens pieces closer to the imaging plane to provide downsized lightweight zoom lenses of magnification as high as 20 diameters, with an image stabilizer or vibration compensating mechanism being also reduced in dimensions. An exemplary improved high magnification zoom lens has four groups of lens pieces, namely, the first or leading lens group G1 of positive refractivity in the foremost position closer to the subject, the second lens group G2 of negative refractivity, the third lens group G3 of positive refractivity, and the fourth lens group G4 of positive refractivity in the rearmost position closer to the imaging plane, all arranged in this order.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 6, 2012
    Assignee: Tamron Co., Ltd.
    Inventors: Dayong Li, Toru Nara
  • Publication number: 20120234751
    Abstract: A pretreatment method is provided, which comprises the following steps: (1) wastewater feed is introduced into a first end of a first aeration basin, and is mixed with a first concentrated mixed liquor to obtain a first mixed liquor; (2) the first mixed liquor is aerated in the aeration stage of the first aeration basin to obtain a second mixed liquor at a second end of the first aeration basin; (3) the second mixed liquor is introduced into a first sedimentation basin to obtain a supernatant and the first concentrated mixed liquor; (4) the supernatant is discharged and at least a part of the first concentrated mixed liquor is returned to the first end of the first aeration basin. At the same time, a sewage treatment method using the wastewater pretreatment method is provided. The pretreatment method can be used steadily for a long time without discharging sludge.
    Type: Application
    Filed: December 1, 2010
    Publication date: September 20, 2012
    Inventors: Jinmin Li, Liankui Zhou, Dayong Li
  • Publication number: 20120228204
    Abstract: A sewage treatment apparatus comprises a first stage equipment for treating sewage feed to obtain a first effluent and a second stage equipment for treating the first effluent to obtain a second effluent. The second stage equipment comprises a mixer (VI) for mixing the first effluent and a flocculation agent to obtain the first effluent containing the flocculation agent and a flocculation-clarification equipment (VII) comprises a first flocculation reaction chamber (A), into which the first effluent containing the flocculation agent is entered and subjected to flocculation reaction to form a mixture of water and dreg; a first separation chamber (C), into which the mixture of water and dreg from the first flocculation reaction chamber (A) is entered and separated to obtain a first part of the second effluent and a first dreg; and a second separation chamber (D), into which part of the first dreg is entered and separated to obtain a second part of the second effluent and a second dreg.
    Type: Application
    Filed: December 1, 2010
    Publication date: September 13, 2012
    Inventors: Jinmin Li, Liankui Zhou, Dayong Li
  • Publication number: 20120228217
    Abstract: The present invention provides a method for sludge treatment, comprising the following steps: (1) mixing a sludge feed from a sewage biotreatment process with a first mixed liquor to obtain a second mixed liquor; (2) subjecting the second mixed liquor to an oxygen-supplying process to obtain a third mixed liquor; (3) subjecting the third mixed liquor to an anoxic process to obtain a fourth mixed liquor; (4) separating the fourth mixed liquor to obtain a supernatant liquid and a first concentrated mixed liquor; (5) discharging the supernatant liquid, and returning at least a part of the first concentrated mixed liquor as the first mixed liquor to the step (1), wherein the amount of sludge of the first concentrated mixed liquor that does not return to the step (1) is less than the amount of sludge of the sludge feed. The present invention further relates to the use of the method for sludge treatment in sewage treatment. The method for sludge treatment can achieve a long term stable run without sludge discharge.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 13, 2012
    Inventors: Jinmin Li, Liankui Zhou, Dayong Li
  • Patent number: 8199414
    Abstract: The present invention is a variable power zoom lens that is suitable to APS-format single-lens reflex cameras. The zoom lens has the foremost or first lens group G1 of positive refractivity, the second lens group G2 of negative refractivity, the third lens group G3 of positive refractivity, and the fourth lens group G4 of positive refractivity disposed in sequence from a position closer to the object toward the image plane, and it meets requirements as defined in conditional formulae as follows: 6<Lw/(Ft/Fw)<10 where Lw is the entire length of the lens optics (i.e., from the front surface of the foremost lens piece to the image plane) at the wide-angle end, Ft is a focal length of the lens optics in whole at the telephoto end, and Fw is the focal length of the lens optics in whole at the wide-angle end.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 12, 2012
    Assignee: Tamron Co., Ltd.
    Inventor: Dayong Li
  • Patent number: 8169718
    Abstract: The present invention is directed to wide-angle zoom lenses dedicated to single-lens reflex digital cameras, which attains zoom ratio greater than 2. Such a wide-angle zoom lens has four groups of lens pieces, namely comprising the leading or foremost 1st lens group of negative refractivity closest to an objective field, the succeeding 2nd lens group of positive refractivity, the third lens group of negative refractivity, and the trailing 4th lens group of positive refractivity arranged in this order to move each lens group to vary optical power; and the 1st lens group includes a front subset of the lens pieces of negative refractive power and a rear subset of negative refractive power. The front-end lens piece in the 1st lens group is shaped in negative meniscus lens that has its concave surface faced toward an imaging plane and has the opposite surfaces shaped aspherical. The front and rear subsets of the 1st lens group meet requirements of a focal length as expressed in the following formula: 3.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 1, 2012
    Assignees: Tamron Co., Ltd., Nikon Corporation
    Inventors: Dayong Li, Hiroshi Yamamoto, Hiroki Harada
  • Patent number: 8159757
    Abstract: A zoom lens includes, sequentially from an object side, a positive first lens group; a negative second lens group; a positive third lens group; and a positive fourth lens group, where 2.0?D23W/FW?3.0 is satisfied. D23W is an interval, at a wide angle edge, between a lens that among lenses of the second lens group, is farthest on an imaging plane side and a lens that among lenses of the third lens group, is farthest on the object side. FW is a focal length of an optical system of the zoom lens at infinity focus, at the wide angle edge.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: April 17, 2012
    Assignee: Tamron Co., Ltd.
    Inventor: Dayong Li
  • Publication number: 20120062993
    Abstract: A zoom lens includes, sequentially from an object side, a first lens group having a positive refractive power; a second lens group having a negative refractive power; a third lens group having a positive refractive power; and a fourth lens group having a positive refractive power. Zoom is performed by moving the second and the third lens groups in a direction along an optical axis. The fourth lens group consists of, sequentially from the object side, a front group having a positive refractive power, an intermediate group configured by a cemented lens formed by a positive lens and a negative lens and having an overall refractive power that is negative, and a rear group having a positive refractive power. Blur is corrected by moving the intermediate group in a direction that is substantially orthogonal to the optical axis.
    Type: Application
    Filed: July 14, 2011
    Publication date: March 15, 2012
    Inventor: Dayong LI
  • Publication number: 20120063003
    Abstract: A zoom lens includes, sequentially from an object side, a first lens group having a positive refractive power; a second lens group having negative refractive power; a third lens group having a positive refractive power; and a fourth lens group having a positive refractive power. The third lens group includes, sequentially from the object side, a front group having a positive refractive power and a rear group having a negative refractive power. Zoom is performed by moving the second lens group and the third lens group in a direction along an optical axis, and by integrally moving the front group and the rear group in a direction along the optical axis. Focusing is preformed by moving the front group in a direction along the optical axis.
    Type: Application
    Filed: July 14, 2011
    Publication date: March 15, 2012
    Inventor: Dayong LI