Patents by Inventor Dean Scribner

Dean Scribner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10689284
    Abstract: The present invention is directed to a method for making infrared transmitting graded index optical elements by selecting at least two different infrared-transmitting materials, each with a different refractive index, having similar thermo-viscous behavior; assembling the infrared-transmitting materials into a stack comprising one or more layers of each infrared-transmitting material resulting in the stack having a graded index profile; and forming the stack into a desired shape. Also disclosed is the related optical element made by this method.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: June 23, 2020
    Assignee: THE GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Daniel J. Gibson, Jasbinder S. Sanghera, Guillermo R. Villalobos, Ishwar D. Aggarwal, Dean A Scribner
  • Patent number: 8462179
    Abstract: A method and system is provided for performing high-resolution image assembly regardless of observed scene content. An imaging system, including a focal plane array and lenslet array can be calibrated to account for subimage shifts. A calibration module can determine the subimage shifts by calculating an average point source position reference point coordinates for each of the subimages, and then determining the difference between the average point source position and the reference point coordinates for each subimage. The imaging system can then be calibrated utilizing the subimage shifts for each of the plurality of subimages. Finally, an assembly module can perform a high-resolution image assembly with the calibrated imaging system.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: June 11, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Erin F. Fleet, Andrey V. Kanaev, Dean A Scribner, John R. Ackerman
  • Publication number: 20120206796
    Abstract: The present invention is directed to a method for making infrared transmitting graded index optical elements by selecting at least two different infrared-transmitting materials, each with a different refractive index, having similar thermo-viscous behavior; assembling the infrared-transmitting materials into a stack comprising one or more layers of each infrared-transmitting material resulting in the stack having a graded index profile; and forming the stack into a desired shape. Also disclosed is the related optical element made by this method.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 16, 2012
    Inventors: Daniel J. Gibson, Jasbinder S. Sanghera, Guillermo R. Villalobos, Ishwar D. Aggarwal, Dean A. Scribner
  • Publication number: 20100013857
    Abstract: A method and system is provided for performing high-resolution image assembly regardless of observed scene content. An imaging system, including a focal plane array and lenslet array can be calibrated to account for subimage shifts. A calibration module can determine the subimage shifts by calculating an average point source position reference point coordinates for each of the subimages, and then determining the difference between the average point source position and the reference point coordinates for each subimage. The imaging system can then be calibrated utilizing the subimage shifts for each of the plurality of subimages. Finally, an assembly module can perform a high-resolution image assembly with the calibrated imaging system.
    Type: Application
    Filed: July 20, 2009
    Publication date: January 21, 2010
    Inventors: Erin F. Fleet, Andrey V. Kanaev, Dean A. Scribner, John R. Ackerman
  • Patent number: 7521224
    Abstract: The electroporation array is comprised of three technologies: microwire glass electrodes, microelectronic multiplexer stimulator chips and microfluidic flow chamber. Various substances, such as genes, gene silencing RNAi, gene inhibition agents or drugs, can be perfused into the microfluidic flow chamber. The entry of the various substances into the cells will be facilitated by electroporation. An applied electric potential causes nanoscale pores to open in the cell membrane allowing substances in the solution to freely diffuse into the cell. The specific cells selected for electroporation are defined using the computer controlled microelectronic stimulator array. An “image” of which electrodes within the array to apply the electric potential to, and thus electroporate, is de-multiplexed onto the array. All the selected electrodes deliver a current pulse varied by the intensity of the de-multiplexed “image”.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: April 21, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Lee Johnson, Dean Scribner, Joseph Pancrazio
  • Patent number: 7248751
    Abstract: A system for enhancing images from an electro-optic imaging sensor and for reducing the necessary focal length of a sensor while preserving system acuity. This system uniquely reduces the necessary focal length and enhances images by collecting a video sequence, estimating motion associate with this sequence, assembling video frames into composite images, and applying image restoration to restore the composite image from pixel, lens blur, and alias distortion. The invention synthetically increases the pixel density of the focal plane array. Thus it reduces the necessary size of the projected blur circle or equivalently it reduces the minimum focal length requirements.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: July 24, 2007
    Assignee: United States of America as Represented by the Secretary of the Navy
    Inventors: Jonathon M Schuler, Dean A Scribner, J Grant Howard
  • Patent number: 6970745
    Abstract: The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: November 29, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Dean Scribner
  • Publication number: 20050201637
    Abstract: A system for enhancing images from an electro-optic imaging sensor and for reducing the necessary focal length of a sensor while preserving system acuity. This system uniquely reduces the necessary focal length and enhances images by collecting a video sequence, estimating motion associate with this sequence, assembling video frames into composite images, and applying image restoration to restore the composite image from pixel, lens blur, and alias distortion. The invention synthetically increases the pixel density of the focal plane array. Thus it reduces the necessary size of the projected blur circle or equivalently it reduces the minimum focal length requirements.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 15, 2005
    Inventors: Jonathan Schuler, Dean Scribner, J. Howard
  • Publication number: 20050070018
    Abstract: The electroporation array is comprised of three technologies: microwire glass electrodes, microelectronic multiplexer stimulator chips and microfluidic flow chamber. Various substances, such as genes, gene silencing RNAi, gene inhibition agents or drugs, can be perfused into the microfluidic flow chamber. The entry of the various substances into the cells will be facilitated by electroporation. An applied electric potential causes nanoscale pores to open in the cell membrane allowing substances in the solution to freely diffuse into the cell. The specific cells selected for electroporation are defined using the computer controlled microelectronic stimulator array. An “image” of which electrodes within the array to apply the electric potential to, and thus electroporate, is de-multiplexed onto the array. All the selected electrodes deliver a current pulse varied by the intensity of the de-multiplexed “image”.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 31, 2005
    Inventors: Lee Johnson, Dean Scribner, Joseph Pancrazio
  • Publication number: 20040172100
    Abstract: The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein.
    Type: Application
    Filed: October 17, 2003
    Publication date: September 2, 2004
    Inventors: Mark S. Humayun, James D. Weiland, Dean Scribner
  • Publication number: 20040106966
    Abstract: The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein.
    Type: Application
    Filed: August 14, 2003
    Publication date: June 3, 2004
    Inventors: Dean Scribner, Mark Humayun, James Weiland
  • Patent number: 6647297
    Abstract: The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: November 11, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Dean Scribner
  • Publication number: 20020161417
    Abstract: The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow , flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein.
    Type: Application
    Filed: February 4, 2002
    Publication date: October 31, 2002
    Inventor: Dean Scribner
  • Publication number: 20020111655
    Abstract: The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein.
    Type: Application
    Filed: April 17, 2002
    Publication date: August 15, 2002
    Inventor: Dean Scribner
  • Patent number: 6393327
    Abstract: The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: May 21, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Dean Scribner
  • Publication number: 20020015536
    Abstract: An apparatus for processing imaging data in a plurality of spectral bands and fusing the data into a color image includes one or more imaging sensors and at least two image-acquiring sensor areas located on the imaging sensors. Each sensor area is sensitive to a different spectral band than at least one of the other sensor area or areas, and each sensor area will generate an image output representative of an acquired image in the spectral band to which it is sensitive. The apparatus further includes a software program that runs on a computer and executes a registration algorithm for registering the image outputs pixel-to-pixel, an algorithm to scale the images into a 24-bit true color image for display, and a color fusion algorithm for combining the image outputs into a single image.
    Type: Application
    Filed: April 24, 2001
    Publication date: February 7, 2002
    Inventors: Penny G. Warren, Jonathon M. Schuler, Dean Scribner, Richard B. Klein, John G. Howard, Michael P. Satyshur, Melvin R. Kruer