Patents by Inventor Deborah John Boles

Deborah John Boles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150854
    Abstract: Disclosed are methods and systems to detect a class of non-variola Orthopoxviruses, and, more particularly, monkeypox virus. In certain embodiments, the method may comprise obtaining a sample from the subject; and detecting a nucleic acid sequence specific to the non-variola Orthopoxvirus. In some embodiments, the method may further isolation of the non-variola Orthopoxvirus from a solid substrate such as a tissue swab and further purification of viral nucleic acid using silica beads. The sample may in some cases be self-collected by a subject. The disclosed methods and systems, including kits for self-collection, may be used for a high throughput assay allowing for screening of hundreds of samples per day.
    Type: Application
    Filed: November 1, 2023
    Publication date: May 9, 2024
    Inventors: Thomas Jacob Urban, Ayla Burns Harris, Jonathan David Williams, Deborah John Boles, Timothy Staton, Nathan Harris, Phyllis Davis, Suzanne Dale
  • Patent number: 10871460
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: December 22, 2020
    Assignee: Canon U.S.A., Inc.
    Inventors: Ivor T. Knight, Deborah John Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edward Donlon, Robert Moti, Michael Slater, Steven A. Sundberg, Michael R. Knapp
  • Publication number: 20180321170
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 8, 2018
    Applicants: Canon U.S. Life Sciences, Inc., CALIPER LIFE SCIENCES, INC.
    Inventors: Ivor T. Knight, Deborah John Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edward Donlon, Robert Moti, Michael Slater, Steven A. Sundberg, Michael R. Knapp
  • Patent number: 9983155
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 29, 2018
    Assignees: Canon U.S. Life Sciences, Inc., CALIPER LIFE SCIENCES, INC.
    Inventors: Ivor T. Knight, Deborah John Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edward Donlon, Robert Moti, Michael Slater, Steven A. Sundberg, Michael R. Knapp
  • Publication number: 20140093879
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 3, 2014
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Ivor T. Knight, Deborah John Boles, Aaron Rulison, Wesley B. Dong, Andrew Fabans, Allen Boronkay, Edward Donlon, Robert Moti, Michael Slater
  • Patent number: 7547514
    Abstract: The invention provides novel SGP primers for improved use in waveform-profiling methods of DNA amplification. In one embodiment, use of an SGP primer in a method of DNA amplification results in exponential amplification of several distinct products. In another embodiment, the methods of the invention further comprise a novel half-time elongation step. In another embodiment, the distinct products may be detected via melting temperature analysis. The primers and methods of the invention may be combined to determine an organism in a sample.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: June 16, 2009
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Toru Takahashi, Deborah John Boles