Patents by Inventor Deepak Shukla

Deepak Shukla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10356899
    Abstract: A precursor article has a substrate and a photosensitive thin film or a photosensitive thin film pattern on a supporting side. The photosensitive thin film and each photosensitive thin film patterns comprises a non-hydroxylic-solvent soluble silver complex that is represented by the following formula (I): (Ag+)a(L)b(P)c?? (I) wherein L represents an ?-oxy carboxylate; P represents a 5- or 6-membered N-heteroaromatic compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. A photosensitizer that can either reduce the reducible silver ion or oxidize the ?-oxy carboxylate having a reduction potential can also be present. Such precursor articles can be irradiated with UV-visible radiation to reduce the silver ions to provide electrically-conductive metallic silver in thin films or thin film patterns in product articles or devices.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: July 16, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Mark R. Mis, Thomas Robert Welter, Kevin P. Klubek, Kevin M. Donovan
  • Patent number: 10315643
    Abstract: A method of operating a first electric machine and a second electric machine in a vehicle drive includes operating the vehicle drive in: a first operating mode by operating the first electric machine in a voltage mode and the second electric machine in a torque mode; and a second operating mode by operating the first electric machine in the torque mode and the second electric machine in the voltage mode.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 11, 2019
    Assignee: Oshkosh Defense, LLC
    Inventors: Deepak Shukla, Rongjun Zhang, Nader Nasr
  • Patent number: 10311990
    Abstract: A photosensitive reducible silver ion-containing composition can be used to provide electrically-conductive silver metal in thin film or patterns on a substrate after irradiation with UV-visible light. The composition comprises: a) a non-hydroxylic-solvent soluble silver complex represented by the following formula (I): wherein L represents an ?-oxy carboxylate; P represents a primary alkylamine; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is b, b is 1, and when a is 2, b is 2; b) optionally, a photosensitizer that can either reduce the reducible silver ion or oxidize the ?-oxy carboxylate; and c) a solvent medium comprising at least one non-hydroxylic solvent.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: June 4, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Deepak Shukla
  • Patent number: 10314173
    Abstract: A precursor article has a substrate and a photosensitive thin film or photosensitive thin film pattern on one or both supporting sides. A non-hydroxylic-solvent soluble silver complex is present that is represented by the following formula (I): (Ag+)a(L)b(P)c?? (I) wherein L represents an ?-oxy carboxylate; P represents a primary alkylamine; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. A photosensitizer can also be present to enhance photosensitivity for conversion of reducible silver ions to electrically-conductive silver metal in a resulting product article or device. The electrically-conductive silver metal can be provided as a uniform electrically-conductive silver metal-containing thin film or layer, or as one or more electrically-conductive silver metal-containing thin film patterns.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: June 4, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Mark R. Mis, Thomas Robert Welter, Kevin M. Donovan
  • Publication number: 20190136081
    Abstract: A silver nanoparticle composite or a copper nanoparticle composite is formed in which the silver nanoparticle composite has silver nanoparticles, and both (a) one or more polymers and ascorbic acid adsorbed on the silver nanoparticles, wherein the (a) one or more polymers are selected from one or more of cellulose acetate, cellulose acetate phthalate, cellulose acetate butyrate, cellulose acetate propionate, cellulose acetate trimellitate, hydroxypropylmethyl cellulose phthalate, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropylmethyl cellulose, and carboxymethyl cellulose. Copper nanoparticle composite are similarly formed in which both the (a) one or more polymers and ascorbic acid are adsorbed on the copper nanoparticles.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 9, 2019
    Inventor: Deepak Shukla
  • Publication number: 20190136074
    Abstract: A method is used to prepare silver nanoparticles or copper nanoparticles in the form of a silver nanoparticle cellulosic polymeric composite or a copper nanoparticle cellulose polymeric composite, respectively. A cellulosic polymer, organic solvent having a boiling point at atmospheric pressure of 100° C. to 500° C. and a Hansen parameter (?TPolymer) equal to or greater than that of the cellulosic polymer, ascorbic acid, and a nitrogenous base are mixed to form a premix solution. At room temperature or upon heating the premix solution to a temperature of at least 40° C., a solution of reducible silver ions or reducible copper ions is added. The resulting silver or copper nanoparticle composite is cooled, isolated, and re-dispersed in an organic solvent, providing a non-aqueous silver-containing or copper-containing dispersion that can be disposed on a substrate to form an article.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 9, 2019
    Inventors: Deepak Shukla, Kevin M. Donovan, Kevin P. Klubek
  • Publication number: 20190111910
    Abstract: A vehicle includes a drive axle, a multi-mode transmission, and a controller coupled to the multi-mode transmission. The multi-mode transmission includes a first gear set having a first planetary gear carrier and a second gear set having a second planetary gear carrier, a first motor/generator coupled to the first gear set, a second motor/generator coupled to the second gear set and selectively coupled to a connecting shaft, a brake positioned to selectively limit a rotational movement of a ring gear of the second gear set when engaged, a first clutch selectively rotationally coupling the first gear set and the second gear set to the drive axle when engaged, and a second clutch selectively rotationally coupling the second motor/generator to the connecting shaft when engaged. The controller is configured to engage the brake and the clutches to selectively reconfigure the multi-mode transmission to an intermediate shift mode of operation.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Applicant: Oshkosh Corporation
    Inventors: Deepak Shukla, Andrew Kotloski
  • Patent number: 10246561
    Abstract: A method is used to prepare silver nanoparticle cellulosic polymer composites. A cellulosic polymer, reducible silver ions in an amount of a weight ratio to the cellulosic polymer of 5:1 to 50:1, and an organic solvent are mixed. Each organic solvent has a boiling point at atmospheric pressure of 100° C. to 500° C. The Hansen parameter (?TPolymer) of the cellulosic polymer is less than or equal to the Hansen parameter (?TSolvent) of the organic solvent. The resulting premix solution is heated to at least 75° C., and a (d) nitrogenous base is added to provide a concentration of the nitrogenous base in an equimolar amount or in molar excess in relation to the amount of reducible silver ions, thereby forming a silver nanoparticle cellulosic polymer composite. After cooling, the silver nanoparticle cellulosic polymer composite is isolated and re-dispersed in an organic solvent to provide a non-aqueous silver-containing dispersion.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: April 2, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Kevin M. Donovan
  • Publication number: 20190094679
    Abstract: A method is used to prepare silver nanoparticles in the form of a silver nanoparticle cellulosic polymeric composite. A cellulosic polymer, organic solvent having a boiling point at atmospheric pressure of 100° C. to 500° C. and a Hansen parameter (?TPolymer) equal to or greater than that of the cellulosic polymer, and a nitrogenous base are mixed to form a premix solution. Upon heating the premix solution to a temperature of at least 75° C., a solution of reducible silver ions is added that is equimolar or less in relation to the nitrogenous base. The weight ratio of reducible silver ions to the cellulosic polymer is 5:1 to 50:1. The resulting silver nanoparticle composite is cooled, isolated, and re-dispersed in an organic solvent, providing a non-aqueous silver-containing dispersion comprising the silver nanoparticle cellulosic polymeric composite.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: Deepak Shukla, Kevin M. Donovan, Kevin P. Klubek
  • Publication number: 20190092907
    Abstract: A method is used to prepare silver nanoparticle cellulosic polymer composites. A cellulosic polymer, reducible silver ions in an amount of a weight ratio to the cellulosic polymer of 5:1 to 50:1, and an organic solvent are mixed. Each organic solvent has a boiling point at atmospheric pressure of 100° C. to 500° C. The Hansen parameter (?TPolymer) of the cellulosic polymer is less than or equal to the Hansen parameter (?TSolvent) of the organic solvent. The resulting premix solution is heated to at least 75° C., and a (d) nitrogenous base is added to provide a concentration of the nitrogenous base in an equimolar amount or in molar excess in relation to the amount of reducible silver ions, thereby forming a silver nanoparticle cellulosic polymer composite. After cooling, the silver nanoparticle cellulosic polymer composite is isolated and re-dispersed in an organic solvent to provide a non-aqueous silver-containing dispersion.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: Deepak Shukla, Kevin Donovan
  • Publication number: 20190092647
    Abstract: A non-aqueous silver-containing dispersion is prepared containing a silver nanoparticle composite comprising silver and a cellulosic polymers so that the silver nanoparticle composite is present at a weight ratio to a cellulosic polymers of at least 5:1 and up to and including 50:1. This dispersion also contains an organic solvent that has a boiling point, at atmospheric pressure, of 100° C. to 500° C. The Hansen parameter (?TPolymer) of the cellulosic polymer is less than or equal to the Hansen parameter (?TSolvent) of the organic solvent. A nitrogenous base having a pKa in acetonitrile of 15 to 25 at 25° C. is also present in an equimolar amount or molar excess in relation to the amount of silver.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: DEEPAK SHUKLA, KEVIN M. DONOVAN
  • Publication number: 20190092923
    Abstract: A non-aqueous silver precursor composition is composed of (a) one or more cellulosic polymers; (b) reducible silver ions that are present at a weight ratio to the one or more cellulosic polymers of 5:1 to 50:1; (c) an organic solvent that has a boiling point at atmospheric pressure of at least 100° C. and up to but less than 500° C.; and (d) a nitrogenous base having a pKa in acetonitrile of at least 15 and up to and including 25 at 25° C. The Hansen parameter (?TPolymer) of each cellulosic polymer is less than or equal to the Hansen parameter (?TSolvent) each organic solvent. In addition, the (d) nitrogenous base is present in an equimolar amount or molar excess in relation to the amount of (b) reducible silver ions.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 28, 2019
    Inventors: Deepak Shukla, Kevin M. Donovan
  • Patent number: 10214657
    Abstract: A non-aqueous silver precursor composition contains at least 1 weight % of one or more (a) polymers that are certain cellulosic polymers; (b) reducible silver ions; and (c) an organic solvent medium consisting of: (i) a hydroxylic organic solvent having an ?-hydrogen atom and a boiling point at atmospheric pressure of 100-500° C., and, optionally, (ii) a nitrile-containing aprotic solvent or a carbonate-containing aprotic solvent different from the (i) organic solvent, each having a boiling point at atmospheric pressure of 100-500° C. The (b) reducible silver ions are present in an amount of 0.1-400 weight %, based on the total weight of the one or more (a) polymers. This composition can be used to form silver nanoparticles under silver ion reducing conditions and then applied to various substrates to provide silver nanoparticle patterns.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: February 26, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Kevin M. Donovan, Jeffrey R. Gillmor
  • Publication number: 20190043635
    Abstract: A photosensitive reducible silver ion-containing composition can be used to provide electrically-conductive silver metal in thin films or patterns. This composition comprises: a) a non-hydroxylic-solvent soluble silver complex represented by formula (I): wherein P represents a 5- or 6-membered N-heteroaromatic compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, but when a is 1, b is 1, and when a is 2, b is 2; b) optionally, a photosensitizer; and c) a solvent medium having a non-hydroxylic solvent. Electrically-conductive silver can be provided by photochemical conversion of the reducible silver ions in the complex. L is represented by formula (III): wherein R4 is a branched or linear alkyl group having 1 to 8 carbon atoms and any of hydrogen atoms of the R4 branched or linear alkyl group optionally can be replaced with a fluorine atom.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Inventor: Deepak Shukla
  • Patent number: 10186342
    Abstract: A photosensitive reducible silver ion-containing composition can be used to provide electrically-conductive silver metal in thin films or patterns. This composition comprises: a) a non-hydroxylic-solvent soluble silver complex represented by the following formula (I): (Ag+)a(L)b(P)c?? (I) wherein L represents an ?-oxy carboxylate; P represents a 5- or 6-membered N-heteroaromatic compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2; b) optionally, a photosensitizer that can either reduce the reducible silver ion or oxidize the ?-oxy carboxylate; and c) a solvent medium comprising at least one non-hydroxylic solvent. Electrically-conductive silver can be provided by photochemical conversion of the reducible silver ions in the complex.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: January 22, 2019
    Assignee: Eastman Kodak Company
    Inventor: Deepak Shukla
  • Patent number: 10174425
    Abstract: A non-aqueous stannous alkoxide composition comprises: component (a) comprising a water-insoluble stannous alkoxide complex comprising stannous ions in an amount of at least 1 weight %, and a photocurable component (b), non-photocurable water-insoluble polymer component (c) having a molecular weight of at least 10,000, or both the photocurable component (b) and the non-photocurable water-insoluble polymer component (c). When photocurable component (b) is present, the non-aqueous stannous alkoxide composition further comprises photosensitizer component (d) that is different from all of components (a) through (c), in an amount of at least 1 weight %. These compositions can be used to prepare silver particles as “seed” catalysts in various articles that can then be used for other purposes such as electroless plating.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: January 8, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Kevin M. Donovan
  • Patent number: 10160438
    Abstract: A vehicle includes a drive axle, a multi-mode transmission, and a controller coupled to the multi-mode transmission. The multi-mode transmission includes a first gear set having a first planetary gear carrier and a second gear set having a second planetary gear carrier, a first motor/generator coupled to the first gear set, a second motor/generator coupled to the second gear set and selectively coupled to a connecting shaft, a brake positioned to selectively limit a rotational movement of a ring gear of the second gear set when engaged, a first clutch selectively rotationally coupling the first gear set and the second gear set to the drive axle when engaged, and a second clutch selectively rotationally coupling the second motor/generator to the connecting shaft when engaged. The controller is configured to engage the brake and the clutches to selectively reconfigure the multi-mode transmission to an intermediate shift mode of operation.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: December 25, 2018
    Assignee: Oshkosh Corporation
    Inventors: Deepak Shukla, Andrew Kotloski
  • Publication number: 20180362547
    Abstract: Electrically-conductive silver metal can be provided in a thin film or pattern on a substrate from a silver complex having reducing silver ions and represented by: (Ag+)a(L)b(P)c?? (I) wherein L represents an ?-oxy carboxylate; P represents a 5- or 6-membered N-heteroaromatic compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. The silver complex is mixed in a hydroxy-free, nitrile-containing aprotic solvent with a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. The reducible silver ions in the a thermally sensitive thin film or pattern can be thermally converted to electrically-conductive metallic silver under suitable heating conditions to provide a product article that can be used in various devices.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Publication number: 20180362548
    Abstract: Electrically-conductive silver metal can be provided in a thin film or pattern on a substrate from a silver complex having reducing silver ions and represented by: wherein L represents an ?-oxy carboxylate; P represents a primary alkylamine compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. The silver complex is mixed in a hydroxy-free, nitrile-containing aprotic solvent with a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. The reducible silver ions in the a thermally sensitive thin film or pattern can be thermally converted to electrically-conductive metallic silver under suitable heating conditions to provide a product article that can be used in various devices.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Publication number: 20180326832
    Abstract: A vehicle includes a connecting shaft, a drive axle, a multi-mode transmission, and a controller. The multi-mode transmission includes a first gear set having a first planetary gear carrier and a second gear set having a second planetary gear carrier, a first motor/generator coupled to the first gear set, a second motor/generator electrically coupled to the first motor/generator and coupled to the second gear set, a brake selectively limiting movement of a portion of the second gear set, and a clutch selectively rotationally coupling the second motor/generator to the connecting shaft. The first gear set is coupled to the connecting shaft, and the planetary gear carriers are rotatably coupled. The controller is configured to selectively configure the multi-mode transmission into an active neutral startup mode of operation by engaging the clutch and the brake such that at least one of the first motor/generator and the second motor/generator produces a voltage.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Applicant: Oshkosh Corporation
    Inventors: Andrew J. Kotloski, Deepak Shukla