Patents by Inventor Denis D. SUKACHEV

Denis D. SUKACHEV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220269974
    Abstract: Systems and methods are disclosed for making a quantum network node. A plurality of scoring function F values are calculated for an array of at least two photonic crystal cavity unit cells, each having a lattice constant a and a hole having a length Hx and a width Hy. A value of a, a value of Hx, and a value of Hy are selected for which a scoring function value is at a maximum. A waveguide region and the array of at least two photonic crystal cavity unit cells based on the selected values are formed on a substrate. At least one ion between a first photonic crystal cavity unit cell and a second photonic crystal cavity unit cell are implanted and annealed into a quantum defect. A coplanar microwave waveguide is formed on the substrate in proximity to the array of at least two photonic crystal cavity unit cells.
    Type: Application
    Filed: July 16, 2020
    Publication date: August 25, 2022
    Inventors: Mihir Keshav BHASKAR, Denis D. SUKACHEV, Christian Thieu NGUYEN, Bartholomeus MACHIELSE, David S. LEVONIAN, Ralf RIEDINGER, Mikhail D. LUKIN, Marko LONCAR
  • Patent number: 11074520
    Abstract: Systems and methods are disclosed for preparing and evolving atomic defects in diamond. Silicon vacancy spins may be cooled to temperatures equal to or below 500 mK to reduce the influence of phonons. The cooling, manipulation, and observation systems may be designed to minimize added heat into the system. A CPMG sequence may be applied to extend coherence times. Coherence times may be extended, for example, to 13 ms.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: July 27, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Denis D. Sukachev, Alp Sipahigil, Christian Thieu Nguyen, Mihir Keshav Bhaskar, Ruffin E. Evans, Mikhail D. Lukin
  • Publication number: 20200184362
    Abstract: Systems and methods are disclosed for preparing and evolving atomic defects in diamond. Silicon vacancy spins may be cooled to temperatures equal to or below 500 mK to reduce the influence of phonons. The cooling, manipulation, and observation systems may be designed to minimize added heat into the system. A CPMG sequence may be applied to extend coherence times. Coherence times may be extended, for example, to 13 ms.
    Type: Application
    Filed: August 10, 2018
    Publication date: June 11, 2020
    Inventors: Denis D. SUKACHEV, Alp SIPAHIGIL, Christian Thieu NGUYEN, Mihir Keshav BHASKAR, Ruffin E. EVANS, Mikhail D. LUKIN