Patents by Inventor Denis Duchesne

Denis Duchesne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230279192
    Abstract: The process is described for recycling a heat-treated solid article including a fluorinated polymer having a fluorinated polymer backbone chain and a plurality of groups represented by formula —SO3Z, wherein Z is independently a hydrogen, an alkali-metal cation, or a quaternary ammonium cation. The heat-treated solid article was previously heated at a temperature of at least 100° C. The process includes heating the heat-treated solid article in the presence of water and base to form a fluorinated polymer salt solution, allowing the fluorinated polymer salt solution to cool, and converting the fluorinated polymer salt solution to fluorinated polymer solution wherein Z is hydrogen by cation exchange.
    Type: Application
    Filed: June 8, 2021
    Publication date: September 7, 2023
    Inventors: Gregg D. Dahlke, Denis Duchesne, Klaus Hintzer, Mark W. Muggli, Thomas W. Schoettle, Arne Thaler
  • Publication number: 20230090482
    Abstract: A composite includes a fluorinated polymer and nanoparticles of a metal salt. The metal salt has a solubility product of not more than 1×10?4. The fluorinated polymer includes a fluorinated polymer backbone chain and a plurality of groups represented by formula —SO2X, in which each X is independently —NZH, —NZSO2(CF2)1-6SO2X?, —NZ[SO2(CF2)dSO2NZ]1-10SO2(CF2)dSO2X? or —OZ, and Z is independently a hydrogen, an alkali-metal cation, or a quaternary ammonium cation, X? is independently —NZH or —OZ, and each d is independently 1 to 6. A polymer electrolyte membrane, an electrode, and a membrane electrode assembly including the composite are also provided.
    Type: Application
    Filed: April 9, 2021
    Publication date: March 23, 2023
    Inventors: Arne Thaler, Andreas Rosin, Mark W. Muggli, Klaus Hintzer, Patrick K. Heimerdinger, Thorsten Gerdes, Denis Duchesne, Gregg D. Dahlke
  • Publication number: 20230056130
    Abstract: The copolymer includes divalent units represented by formula —[CF2—CF2]—, at least one divalent unit represented by formula (I): and at least one divalent unit independently represented by formula (II): A is —N(RFa)2 or a is non-aromatic, 5- to 8-membered, perfluorinated ring comprising one or two nitrogen atoms in the ring and optionally comprising at least one oxygen atom in the ring, each RFa is independently linear or branched perfluoroalkyl having 1 to 8 carbon atoms and optionally interrupted by at least one catenated O or N atom, each Y is independently —H or —F, with the proviso that one Y may be —CF3, h is 0, 1, or 2, each i is independently 2 to 8, and j is 0, 1, or 2. A catalyst ink and polymer electrolyte membrane including the copolymer are also provided.
    Type: Application
    Filed: December 18, 2020
    Publication date: February 23, 2023
    Inventors: Lisa P. Chen, Gregg D. Dahlke, Denis Duchesne, Klaus Hintzer, Matthew J. Lindell, Sean M. Smith, Arne Thaler, Michael A. Yandrasits
  • Publication number: 20230002297
    Abstract: The process produces a fluorinated olefin from a fluorinated copolymer having at least one of sulfonic acid groups, carboxylic acid groups, or salts thereof. The process includes heating the fluorinated copolymer at a first temperature not more than 450° C. to decompose at least one of the sulfonic acid groups, carboxylic acid groups, or salts thereof to form a partially pyrolyzed intermediate and subsequently heating the partially pyrolyzed intermediate at a second temperature of at least 550° C. to produce the fluorinated olefin.
    Type: Application
    Filed: December 17, 2020
    Publication date: January 5, 2023
    Inventors: Arne Thaler, Achim Schmidt-Rodenkirchen, Mark W. Muggli, Konstantin Mierdel, Klaus Hintzer, Thorsten Gerdes, Denis Duchesne, Gregg D. Dahlke
  • Patent number: 11492431
    Abstract: The copolymer includes divalent units represented by formula —[CF2—CF2]—, divalent units represented by formula; and one or more divalent units independently represented by formula: The copolymer has an —SO2X equivalent weight in a range from 300 to 2000. A polymer electrolyte membrane that includes the copolymer and a membrane electrode assembly that includes such a polymer electrolyte membrane are also provided.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: November 8, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Lisa P. Chen, Gregg D. Dahlke, Denis Duchesne, Steven J. Hamrock, Klaus Hintzer, Markus E. Hirschberg, Arne Thaler, Tilman C. Zipplies
  • Patent number: 11377510
    Abstract: The copolymer includes divalent units represented by formula —[CF2—CF2]—, divalent units represented by formula: (I), and one or more divalent units independently represented by formula: (II) When Z is hydrogen, the copolymer has an alpha transition temperature of up to 100 ?C. The copolymer has an —SO3Z equivalent weight in a range from 300 to 1400, and a variation of the copolymer in which —SO3Z is replaced with —SO2F has a melt flow index of up to 80 grams per ten minutes measured at a temperature of 265° C. and at a support weight of 5 kg. A catalyst ink or polymer electrolyte membrane including the copolymer are also provided.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: July 5, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Lisa P. Chen, Gregg D. Dahlke, Denis Duchesne, Steven J. Hamrock, Klaus Hintzer, Markus E. Hirschberg, Arne Thaler, Tilman C. Zipplies
  • Patent number: 11267922
    Abstract: There is provided a curable composition comprising a fluorinated block copolymer having (a) at least one A block, wherein the A block is a semi-crystalline segment comprising repeating divalent monomeric units derived from at least a fluorinated monomer; and (b) at least one B block, wherein the B block is a segment comprising repeating divalent monomeric units that comprises at least a fluorinated monomer and a nitrile-containing cure-site monomer.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 8, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Michael H. Mitchell, Denis Duchesne, Tatsuo Fukushi, Larry A. Last, Peter J. Scott, Karl D. Weilandt
  • Patent number: 11261280
    Abstract: Described herein is a millable fluorinated block copolymer having (a) at least one A block, wherein the A block is a semi-crystalline segment comprising repeating divalent monomeric units derived from at least TFE, HFP and VDF; (b) at least one B block, wherein the B block is a segment comprising repeating divalent monomeric units derived from at least HFP and VDF; and (c) a bisolefin monomer, wherein at least (i) the semi-crystalline segment of the A block comprises repeating divalent monomeric units derived from TFE, HFP, VDF, and the bisolefin monomer, (ii) the segment of the B block comprises repeating divalent monomeric units derived from HFP, VDF, and the bisolefin monomer, or (iii) a combination thereof; and wherein the millable fluorinated block copolymer has a modulus of 0.1 to 2.5 MPa at 100° C.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 1, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Michael H. Mitchell, Denis Duchesne, Tatsuo Fukushi, Larry A. Last, Peter J. Scott, Karl D. Weilandt
  • Patent number: 11155661
    Abstract: A method of making a copolymer is disclosed. The method includes copolymerizing components including tetrafluoroethylene and a compound represented by formula CF2?CF—O—(CF2)a—SO2X, wherein “a” is a number from 1 to 4, and X is —NZH, —NZ—SO2—(CF2)1-6—SO2X?, or —OZ, wherein Z is independently a hydrogen, an alkali metal cation, or a quaternary ammonium cation, and wherein X? is independently —NZH or —OZ. The components include at least 60 mole % of tetrafluoroethylene based on the total amount of components. A copolymer prepared by the method is also provided. A method of making a membrane using the copolymer is also provided. The present disclosure also provides a polymer electrolyte membrane that includes a copolymer made by the method and a membrane electrode assembly that includes such a polymer electrolyte membrane.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: October 26, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Gregg D. Dahlke, Denis Duchesne, Klaus Hintzer, Markus E. Hirschberg, Kai H. Lochhaas, Arne Thaler, Tilman C. Zipplies
  • Publication number: 20210284780
    Abstract: Described herein is a millable fluorinated block copolymer having (a) at least one A block, wherein the A block is a semi-crystalline segment comprising repeating divalent monomeric units derived from at least TFE, HFP and VDF; (b) at least one B block, wherein the B block is a segment comprising repeating dilvalent monomeric units derived from at least HFP and VDF; and (c) a bisolefin monomer, wherein at least (i) the semi-crystalline segment of the A block comprises repeating divalent monomeric units derived from TFE, HFP, VDF, and the bisolefin monomer, (ii) the segment of the B block comprises repeating divalent monomeric units derived from HFP, VDF, and the bisolefin monomer, or (iii) a combination thereof; and wherein the millable fluorinated block copolymer has a modulus of 0.1 to 2.5 MPa at 100° C.
    Type: Application
    Filed: January 12, 2018
    Publication date: September 16, 2021
    Inventors: Michael H. Mitchell, Denis Duchesne, Tatsuo Fukushi, Larry A. Last, Peter J. Scott, Karl D. Weilandt
  • Patent number: 10844152
    Abstract: A copolymer having tetrafluoroethylene units and units independently represented by formula (I) in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more —0— groups, n is independently from 1 to 6, and z is 0, 1, or 2. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies, Denis Duchesne
  • Publication number: 20200303755
    Abstract: The copolymer includes divalent units represented by formula —[CF2-CF2]—, divalent units represented by formula: (I), and one or more divalent units independently represented by formula: (II) When Z is hydrogen, the copolymer has an alpha transition temperature of up to 100 ?C. The copolymer has an —SO3Z equivalent weight in a range from 300 to 1400, and a variation of the copolymer in which —SO3Z is replaced with —SO2F has a melt flow index of up to 80 grams per ten minutes measured at a temperature of 265° C. and at a support weight of 5 kg. A catalyst ink or polymer electrolyte membrane including the copolymer are also provided.
    Type: Application
    Filed: September 14, 2018
    Publication date: September 24, 2020
    Inventors: Lisa P. Chen, Gregg D. Dahlke, Denis Duchesne, Steven J. Hamrock, Klaus Hintzer, Markus E. Hirschberg, Arne Thaler, Tilman C. Zipplies
  • Publication number: 20200291144
    Abstract: Described herein is a polymer comprising: interpolymerized units of (i) a fluorinated terminal alkene monomer and (ii) a tertiary amine-containing fluorinated monomer comprising at least one of a vinyl amine, a substituted vinyl amine, an allyl amine, a substituted allyl amine, and combinations thereof, wherein the polymer can be amorphous or semi-crystalline with a melting point no greater than 325° C. Dispersions thereof and methods of making and using the same are also described.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Michael J. Bulinski, Michael G. Costello, Denis Duchesne, Klaus Hintzer, William M. Lamanna, Kai H. Lochhaas, Michael J. Parent, Sean M. Smith
  • Patent number: 10766990
    Abstract: A copolymer having tetrafluoroethylene units, hexafluoropropylene units, and units independently represented by formula in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more —O— groups, n is from 1 to 6, and m is 0 or 1. The copolymer has a melt flow index in a range from 25 grams per 10 minutes to 35 grams per 10 minutes and has up to 50 unstable end groups per 106 carbon atoms. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: September 8, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Denis Duchesne, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Per M. Nelson, Jens C. Schrooten, Karl D. Weilandt, Tilman C. Zipplies
  • Publication number: 20200277420
    Abstract: The copolymer includes divalent units represented by formula —[CF2—CF2]—, divalent units represented by formula: and one or more divalent units independently represented by formula: The copolymer has an —SO2X equivalent weight in a range from 300 to 2000. A polymer electrolyte membrane that includes the copolymer and a membrane electrode assembly that includes such a polymer electrolyte membrane are also provided.
    Type: Application
    Filed: September 14, 2018
    Publication date: September 3, 2020
    Inventors: Lisa P. Chen, Gregg D. Dahlke, Denis Duchesne, Steven J. Hamrock, Klaus Hintzer, Markus E. Hirschberg, Arne Thaler, Tilman C. Zipplies
  • Patent number: 10730980
    Abstract: A copolymer having tetrafluoroethylene units, hexafluoropropylene units, and units independently represented by formula in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more —O— groups, z is 1 or 2, each n is independently from 1 to 6, and m is 0 or 1. The copolymer has a melt flow index in a range from 25 grams per 10 minutes to 35 grams per 10 minutes and has a combined number of unstable end groups and —CF2H end groups in a range from 25 per 106 carbon atoms up to 120 per 106 carbon atoms. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: August 4, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Denis Duchesne, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Per M. Nelson, Jens C. Schrooten, Karl D. Weilandt, Tilman C. Zipplies
  • Patent number: 10723868
    Abstract: A polymer composition includes a non-fluorinated, thermoplastic polymer and a minor amount of a fluoropolymer combined with the non-fluorinated polymer. A polymer processing additive composition that includes a fluoropolymer and a polymer processing additive synergist is also disclosed. The fluoropolymer includes diads represented by formula —CF2-CF(R)—CH(R?)—CF(R?)— in a range from about 23 mole percent to about 50 mole percent. Each R is independently —CF3, —Rf, or —ORf, each R? and R? are independently H, F, CF3, or —Rf, and each Rf is independently a perfluoroalkyl group having from 1 to 12 carbon atoms and optionally interrupted by one or more —O— groups. A method of reducing melt defects during the extrusion of a polymer is also disclosed.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: July 28, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Claude Lavallée, Peter J. Scott, Denis Duchesne, Dale E. Hutchens, Larry A. Last, Kirsten J. Fronek, Thomas J. Blong
  • Patent number: 10717795
    Abstract: A copolymer having tetrafluoroethylene units, hexafluoropropylene units, and units independently represented by formula in a range from 0.001 to 2 mole percent, based on the total amount of the copolymer. In these units, a is 0 or 1, each b is independently from 1 to 4, c is 0 to 4, d is 0 or 1, and e is 1 to 6. In the —SO2X groups, X is independently —F, —NH2, —OH, or —OZ, wherein Z is independently a metallic cation or a quaternary ammonium cation. The copolymer has a melt flow index in a range from 20 grams per 10 minutes to 40 grams per 10 minutes. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 21, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Denis Duchesne, Klaus Hintzer, Harald Kaspar, Kai H. Lochhaas, Jens Schrooten, Tilman C. Zipplies
  • Patent number: 10703833
    Abstract: Described herein is a polymer comprising: interpolymerized units of (i) a fluorinated terminal alkene monomer and (ii) a tertiary amine-containing fluorinated monomer comprising at least one of a vinyl amine, a substituted vinyl amine, an allyl amine, a substituted allyl amine, and combinations thereof; wherein the polymer can be amorphous or semi-crystalline with a melting point no greater than 325° C. Dispersions thereof and methods of making and using the same are also described.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: July 7, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Michael J. Bulinski, Michael G. Costello, Denis Duchesne, Klaus Hintzer, William M. Lamanna, Kai H. Lochhaas, Michael J. Parent, Sean M. Smith
  • Publication number: 20200199259
    Abstract: The fluoropolymer dispersion includes a copolymer having divalent units represented by formula —[CF2—CF2]—, divalent units represented by formula: [Formula should be inserted here], and one or more divalent units independently represented by formula: [Formula should be inserted here] dispersed in at least one of water or organic solvent. Methods of making the fluoropolymer dispersion and methods of using the fluoropolymer to make a at least one of a catalyst ink or polymer electrolyte membrane are also provided.
    Type: Application
    Filed: September 14, 2018
    Publication date: June 25, 2020
    Inventors: Lisa P. Chen, Gregg D. Dahlke, Denis Duchesne, Steven J. Hamrock, Klaus Hintzer, Markus E. Hirschberg, Arne Thaler, Tilman C. Zipplies