Patents by Inventor Denis Kouroussis

Denis Kouroussis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10804692
    Abstract: A solid-state circuit protector includes a first power semiconductor device having an ON resistance that increases with increasing temperature and a second power semiconductor device connected in parallel with the first power semiconductor device having an ON resistance that decreases with increasing temperature. During times when abnormally high currents are flowing through the solid-state circuit protector, the second power semiconductor is switched ON so that some or all of the current is diverted through it, thus protecting the first power semiconductor device from being damaged due to overheating. The first power semiconductor device is either switched OFF, allowing it to cool in anticipation of a lighter load, or is configured to remain ON so that it shares the burden of carrying the high current with the parallel-connected second power semiconductor device yet operates cooler and at a lower ON resistance since it is not required to pass the full current.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: October 13, 2020
    Assignee: Atom Powers, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Patent number: 10784061
    Abstract: A dynamically coordinatable electrical distribution system includes a plurality of intelligently-controlled protection devices (PDs), a communication and control bus (comm/control) bus, and a central computer. The plurality of intelligently-controlled PDs is configured to protect a plurality of associated electrical loads from faults, developing faults, and other undesired electrical anomalies. Each of the PDs further has electrically adjustable time-current characteristics. The intelligently-controlled PDs are communicatively coupled to the comm/control bus and configured to report current data representative of real-time currents flowing through their respective loads to the central computer, via the comm/control bus. The central computer is configured to communicate with the plurality of PDs over the comm/control bus and dynamically coordinate the time-current characteristics of the plurality of PDs based on the current data it receives from the PDs.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: September 22, 2020
    Assignee: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Patent number: 10630069
    Abstract: A solid-state circuit interrupter and arc prevention device (SSI/APD) is disclosed. The SSI/APD is designed to be configured in series with a mechanical circuit breaker and serves to interrupt current flowing through the circuit it is protecting upon a short circuit being detected or if an overload has persisted for an inordinate amount of time. The SSI/APD is capable of detecting and responding to faults in a matter of microseconds and detects and responds to faults on its own, without requiring the mechanical circuit breaker to trip. The mechanical circuit breaker can be optionally tripped after the SSI/APD has opened the circuit. However, the mechanical circuit breaker is tripped only after the SSI/APD has interrupted the circuit, so electrical arcing across the circuit breaker's contacts is avoided. The SSI/APD can also be reset remotely after a fault has been cleared, obviating the need for a person to be present to reset it.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: April 21, 2020
    Assignee: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Publication number: 20200083699
    Abstract: A hybrid air-gap/solid-state device protection device (PD) for use in an electrical power distribution system includes an air-gap disconnect unit connected in series with a solid-state device, a sense and drive circuit, and a microcontroller. Upon the sense and drive circuit detecting an impending fault or exceedingly high and unacceptable overvoltage condition in the PD's load circuit, the sense and drive circuit generates a gating signal that quickly switches the solid-state device OFF. Meanwhile, the microcontroller generates a disconnect pulse for the air-gap disconnect unit, which responds by forming an air gap in the load circuit. Together, the switched-OFF solid-state device and air gap protect the load and associated load circuit from being damaged. They also serve to electrically and physically isolate the source of the fault or overload condition from the remainder of the electrical power distribution system.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Applicant: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Patent number: 10541530
    Abstract: A hybrid air-gap/solid-state device protection device (PD) for use in an electrical power distribution system includes an air-gap disconnect unit connected in series with a solid-state device, a sense and drive circuit, and a microcontroller. Upon the sense and drive circuit detecting an impending fault or exceedingly high and unacceptable overvoltage condition in the PD's load circuit, the sense and drive circuit generates a gating signal that quickly switches the solid-state device OFF. Meanwhile, the microcontroller generates a disconnect pulse for the air-gap disconnect unit, which responds by forming an air gap in the load circuit. Together, the switched-OFF solid-state device and air gap protect the load and associated load circuit from being damaged. They also serve to electrically and physically isolate the source of the fault or overload condition from the remainder of the electrical power distribution system.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: January 21, 2020
    Assignee: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Patent number: 10530156
    Abstract: A method and system of power factor optimization and total harmonic distortion are provided under the premise of efficient power management and distribution on an electrical grid. The method and system include a novel optimization technique based on a novel current profiling methodology enabling real-time power management with power factor correction as a function of the optimization. The optimization can be performed under dynamic current constraints. When deployed on an electrical grid, the method and system can provide a new technique for power management targeting an efficiency of the electrical grid. The method and system can thus provide for reduced costs of energy production and reduced carbon emissions into the atmosphere.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: January 7, 2020
    Assignee: Volta Energy, Inc.
    Inventors: Denis Kouroussis, Emre Kulali
  • Publication number: 20190341213
    Abstract: In an electrical distribution system including a solid-state circuit breaker (SSCB) and one or more downstream mechanical circuit breakers (CBs), a solid-state switching device in the SSCB is repeatedly switched ON and OFF during a short circuit event, to reduce a root-mean-square (RMS) value of the short circuit current. The resulting pulsed short circuit current is regulated in a hysteresis control loop, to limit the RMS to a value low enough to prevent the SSCB from tripping prematurely but high enough to allow one of the downstream mechanical CBs to trip and isolate the short circuit. Pulsing is allowed to continue for a maximum short circuit pulsing time. Only if none of the downstream mechanical CBs is able to trip to isolate the short circuit within the maximum short circuit pulsing time is the SSCB allowed to trip.
    Type: Application
    Filed: April 12, 2019
    Publication date: November 7, 2019
    Applicant: Atom Power, Inc.
    Inventors: Denis Kouroussis, Ryan Kennedy
  • Patent number: 10429914
    Abstract: Multi-level data center using consolidated power control is disclosed. One or more controllers communicate with one or more power supplies and sensors to adapt to dynamic load requirements and to distribute DC-power efficiently across multiple IT racks. The distributed DC-power includes one or more DC-voltages. Batteries can be temporarily switched into a power supply circuit to supplement the power supply during spikes in power load demand while a controller reconfigures power supplies to meet the new demand. One or more DC-to-AC converters handle legacy power loads. The DC-to-AC converters are modular and are paralleled for redundancy. The DC-to-AC converters are sourced from the one or more AC-to-DC converters. The AC power is synchronized for correct power flow control. The one or more controllers communicate with the one or more AC-power supplies to dynamically allocate AC-power from the DC-to-AC converters to the multiple legacy IT racks.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: October 1, 2019
    Assignee: Virtual Power Systems, Inc.
    Inventors: Karimulla Raja Shaikh, Ravi Subramaniam, Denis Kouroussis, Rajeev P Huralikoppi, Ryan Justin Kennedy, Erich Karl Nachbar, Shankar Ramamurthy, Pranthik Samal, Rajaram Soundararajan, Andrew Sy
  • Publication number: 20190157021
    Abstract: A dynamically coordinatable electrical distribution system includes a plurality of intelligently-controlled protection devices (PDs), a communication and control bus (comm/control) bus, and a central computer. The plurality of intelligently-controlled PDs is configured to protect a plurality of associated electrical loads from faults, developing faults, and other undesired electrical anomalies. Each of the PDs further has electrically adjustable time-current characteristics. The intelligently-controlled PDs are communicatively coupled to the comm/control bus and configured to report current data representative of real-time currents flowing through their respective loads to the central computer, via the comm/control bus. The central computer is configured to communicate with the plurality of PDs over the comm/control bus and dynamically coordinate the time-current characteristics of the plurality of PDs based on the current data it receives from the PDs.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Applicant: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Patent number: 10276321
    Abstract: A dynamically coordinatable electrical distribution system includes a plurality of intelligently-controlled protection devices (PDs), a communication and control bus (comm/control) bus, and a central computer. The plurality of intelligently-controlled PDs is configured to protect a plurality of associated electrical loads from faults, developing faults, and other undesired electrical anomalies. Each of the PDs further has electrically adjustable time-current characteristics. The intelligently-controlled PDs are communicatively coupled to the comm/control bus and configured to report current data representative of real-time currents flowing through their respective loads to the central computer, via the comm/control bus. The central computer is configured to communicate with the plurality of PDs over the comm/control bus and dynamically coordinate the time-current characteristics of the plurality of PDs based on the current data it receives from the PDs.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: April 30, 2019
    Assignee: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Publication number: 20190115757
    Abstract: A method and system of power factor optimization and total harmonic distortion are provided under the premise of efficient power management and distribution on an electrical grid. The method and system include a novel optimization technique based on a novel current profiling methodology enabling real-time power management with power factor correction as a function of the optimization. The optimization can be performed under dynamic current constraints. When deployed on an electrical grid, the method and system can provide a new technique for power management targeting an efficiency of the electrical grid. The method and system can thus provide for reduced costs of energy production and reduced carbon emissions into the atmosphere.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 18, 2019
    Inventors: Denis Kouroussis, Emre Kulali
  • Publication number: 20190103742
    Abstract: A solid-state circuit interrupter and arc prevention device (SSI/APD) is disclosed. The SSI/APD is designed to be configured in series with a mechanical circuit breaker and serves to interrupt current flowing through the circuit it is protecting upon a short circuit being detected or if an overload has persisted for an inordinate amount of time. The SSI/APD is capable of detecting and responding to faults in a matter of microseconds and detects and responds to faults on its own, without requiring the mechanical circuit breaker to trip. The mechanical circuit breaker can be optionally tripped after the SSI/APD has opened the circuit. However, the mechanical circuit breaker is tripped only after the SSI/APD has interrupted the circuit, so electrical arcing across the circuit breaker's contacts is avoided. The SSI/APD can also be reset remotely after a fault has been cleared, obviating the need for a person to be present to reset it.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 4, 2019
    Applicant: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Patent number: 10186866
    Abstract: A method and system of power factor optimization and total harmonic distortion are provided under the premise of efficient power management and distribution on an electrical grid. The method and system include a novel optimization technique based on a novel current profiling methodology enabling real-time power management with power factor correction as a function of the optimization. The optimization can be performed under dynamic current constraints. When deployed on an electrical grid, the method and system can provide a new technique for power management targeting an efficiency of the electrical grid. The method and system can thus provide for reduced costs of energy production and reduced carbon emissions into the atmosphere.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: January 22, 2019
    Inventors: Denis Kouroussis, Emre Kulali
  • Publication number: 20180366936
    Abstract: A solid-state circuit protector includes a first power semiconductor device having an ON resistance that increases with increasing temperature and a second power semiconductor device connected in parallel with the first power semiconductor device having an ON resistance that decreases with increasing temperature. During times when abnormally high currents are flowing through the solid-state circuit protector, the second power semiconductor is switched ON so that some or all of the current is diverted through it, thus protecting the first power semiconductor device from being damaged due to overheating. The first power semiconductor device is either switched OFF, allowing it to cool in anticipation of a lighter load, or is configured to remain ON so that it shares the burden of carrying the high current with the parallel-connected second power semiconductor device yet operates cooler and at a lower ON resistance since it is not required to pass the full current.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 20, 2018
    Applicant: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Patent number: 10128684
    Abstract: Disclosed are systems and methods to provide energy control via power-requirement analysis and power-source enablement. Both demand-side and supply-side techniques are used alone or in conjunction to determine an optimal number of power sources to supply power to one or more loads. When fluctuations in power requirements are present, measures such as decoupling less-critical loads in order to continue delivering power to critical systems and turning on and off power sources as needed to meet the current power demands of a system are implemented. Power sources are periodically deactivated by the system on a rotational basis such that all power sources wear evenly, prolonging the life of the equipment. A scalable architecture that allows the virtualization of power from the underlying hardware form factor is also provided.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: November 13, 2018
    Assignee: Virtual Power Systems, Inc.
    Inventors: Shankar Ramamurthy, Sushant Shankar, Rajaram Soundararajan, Andrew Sy, Andrew L Wang, Erich Karl Nachbar, K David Lin, Frank Chuang, Rajeev P Huralikoppi, Ryan Justin Kennedy, Denis Kouroussis, Milind Kukanur, Pranthik Samal
  • Publication number: 20180301294
    Abstract: A dynamically coordinatable electrical distribution system includes a plurality of intelligently-controlled protection devices (PDs), a communication and control bus (comm/control) bus, and a central computer. The plurality of intelligently-controlled PDs is configured to protect a plurality of associated electrical loads from faults, developing faults, and other undesired electrical anomalies. Each of the PDs further has electrically adjustable time-current characteristics. The intelligently-controlled PDs are communicatively coupled to the comm/control bus and configured to report current data representative of real-time currents flowing through their respective loads to the central computer, via the comm/control bus. The central computer is configured to communicate with the plurality of PDs over the comm/control bus and dynamically coordinate the time-current characteristics of the plurality of PDs based on the current data it receives from the PDs.
    Type: Application
    Filed: June 1, 2018
    Publication date: October 18, 2018
    Applicant: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Publication number: 20180277317
    Abstract: A dynamically coordinatable electrical distribution system includes a plurality of intelligently-controlled protection devices (PDs), a communication and control bus (comm/control) bus, and a central computer. The plurality of intelligently-controlled PDs is configured to protect a plurality of associated electrical loads from faults, developing faults, and other undesired electrical anomalies. Each of the PDs further has electrically adjustable time-current characteristics. The intelligently-controlled PDs are communicatively coupled to the comm/control bus and configured to report current data representative of real-time currents flowing through their respective loads to the central computer, via the comm/control bus. The central computer is configured to communicate with the plurality of PDs over the comm/control bus and dynamically coordinate the time-current characteristics of the plurality of PDs based on the current data it receives from the PDs.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Applicant: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis
  • Publication number: 20180059754
    Abstract: Multi-level data center using consolidated power control is disclosed. One or more controllers communicate with one or more power supplies and sensors to adapt to dynamic load requirements and to distribute DC-power efficiently across multiple IT racks. The distributed DC-power includes one or more DC-voltages. Batteries can be temporarily switched into a power supply circuit to supplement the power supply during spikes in power load demand while a controller reconfigures power supplies to meet the new demand. One or more DC-to-AC converters handle legacy power loads. The DC-to-AC converters are modular and are paralleled for redundancy. The DC-to-AC converters are sourced from the one or more AC-to-DC converters. The AC power is synchronized for correct power flow control. The one or more controllers communicate with the one or more AC-power supplies to dynamically allocate AC-power from the DC-to-AC converters to the multiple legacy IT racks.
    Type: Application
    Filed: October 20, 2017
    Publication date: March 1, 2018
    Inventors: Karimulla Raja Shaikh, Ravi Subramaniam, Denis Kouroussis, Rajeev P. Huralikoppi, Ryan Justin Kennedy, Erich Karl Nachbar, Shankar Ramamurthy, Pranthik Samal, Rajaram Soundararajan, Andrew Sy
  • Patent number: 9800087
    Abstract: Multi-level data center consolidated power is disclosed. One or more controllers communicate with one or more power supplies and sensors to adapt to dynamic load requirements and to distribute DC-power efficiently across multiple IT racks. The distributed DC-power includes one or more DC-voltages. Batteries can be temporarily switched into a power supply circuit to supplement the power supply during spikes in power load demand while a controller reconfigures power supplies to meet the new demand. In embodiments, one or more DC-to-AC converters handle legacy power loads. The DC-to-AC converters are modular and are paralleled for redundancy. The AC-power is synchronized for correct power flow control. The one or more controllers communicate with the one or more AC-power supplies to dynamically allocate AC-power from the DC-to-AC converters to the multiple IT racks.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 24, 2017
    Assignee: Virtual Power Systems, Inc.
    Inventors: Denis Kouroussis, Rajeev P Huralikoppi, Ryan Justin Kennedy, Erich Karl Nachbar, Shankar Ramamurthy, Pranthik Samal, Rajaram Soundararajan, Andrew Sy
  • Publication number: 20170256934
    Abstract: A hybrid air-gap/solid-state device protection device (PD) for use in an electrical power distribution system includes an air-gap disconnect unit connected in series with a solid-state device, a sense and drive circuit, and a microcontroller. Upon the sense and drive circuit detecting an impending fault or exceedingly high and unacceptable overvoltage condition in the PD's load circuit, the sense and drive circuit generates a gating signal that quickly switches the solid-state device OFF. Meanwhile, the microcontroller generates a disconnect pulse for the air-gap disconnect unit, which responds by forming an air gap in the load circuit. Together, the switched-OFF solid-state device and air gap protect the load and associated load circuit from being damaged. They also serve to electrically and physically isolate the source of the fault or overload condition from the remainder of the electrical power distribution system.
    Type: Application
    Filed: February 27, 2017
    Publication date: September 7, 2017
    Applicant: Atom Power, Inc.
    Inventors: Ryan Kennedy, Denis Kouroussis