Patents by Inventor Denis Tsvetkov

Denis Tsvetkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9263266
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: February 16, 2016
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Publication number: 20150279675
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 1, 2015
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Publication number: 20150200256
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Application
    Filed: April 4, 2013
    Publication date: July 16, 2015
    Applicant: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Patent number: 9082890
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: July 14, 2015
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward Preble, Denis Tsvetkov, N. Mark Williams, Xueping Xu
  • Patent number: 8435879
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: May 7, 2013
    Assignee: Kyma Technologies, Inc.
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward A. Preble, Denis Tsvetkov, Nathaniel Mark Williams, Xueping Xu
  • Patent number: 8202793
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: June 19, 2012
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20110042682
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 24, 2011
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 7777217
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: August 17, 2010
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20100044718
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Application
    Filed: November 30, 2006
    Publication date: February 25, 2010
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward A. Preble, Denis Tsvetkov, Nathaniel Mark Williams, Xueping Xu
  • Publication number: 20070141823
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 21, 2007
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward Preble, Denis Tsvetkov, Andrew Hanser, N. Williams, Xueping Xu
  • Patent number: 6890809
    Abstract: A method for fabricating a p-n heterojunction device is provided, the device being preferably comprised of an n-type GaN layer co-doped with silicon and zinc and a p-type AlGaN layer. The device may also include a p-type GaN capping layer. The device can be grown on any of a variety of different base substrates, the base substrate comprised of either a single substrate or a single substrate and an intermediary layer. The device can be grown directly onto the surface of the substrate without the inclusion of a low temperature buffer layer.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: May 10, 2005
    Assignee: Technologies and Deviles International, Inc.
    Inventors: Sergey Karpov, Alexander Usikov, Heikki I. Helava, Denis Tsvetkov, Vladimir A. Dmitriev
  • Patent number: 6579359
    Abstract: A method is disclosed for fabricating monocrystal material with the bandgap width exceeding 1.8 eV. The method comprises the steps of processing a monocrystal semiconductor wafer to develop a porous layer through electrolytic treatment of the wafer at direct current under UV-illumination, and epitaxially growing a monocrystal layer on said porous layer. Growth on porous layer produces semiconductor material with reduced stress and better characteristics than with the same material grown on non-porous layers and substrates. Also, semiconductor device structure comprising at least one layer of porous group III material is included.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: June 17, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Marina Mynbaeva, Denis Tsvetkov, Vladimir Dmitriev, Alexander Lebedev, Nataliya Savkina, Alexander Syrkin, Stephen Saddow, Karim Mynbaev
  • Publication number: 20030049898
    Abstract: A method for fabricating a p-n heterojunction device is provided, the device being preferably comprised of an n-type GaN layer co-doped with silicon and zinc and a p-type AlGaN layer. The device may also include a p-type GaN capping layer. The device can be grown on any of a variety of different base substrates, the base substrate comprised of either a single substrate or a single substrate and an intermediary layer. The device can be grown directly onto the surface of the substrate without the inclusion of a low temperature buffer layer.
    Type: Application
    Filed: August 9, 2002
    Publication date: March 13, 2003
    Inventors: Sergey Karpov, Alexander Usikov, Heikki I. Helava, Denis Tsvetkov, Vladimir A. Dmitriev