Patents by Inventor Denise Zarins

Denise Zarins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210259760
    Abstract: The present disclosure relates to devices, systems and methods for evaluating the success of a treatment applied to tissue in a patient, such as a radio frequency ablative treatment used to neuromodulate nerves associated with the renal artery. A system monitors parameters or values generated during the course of a treatment. Feedback provided to an operator is based on the monitored values and relates to an assessment of the likelihood that a completed treatment was technically successful. In other embodiments, parameters or values generated during the course of an incomplete treatment (such as due to high temperature or high impedance conditions) may be evaluated to provide additional instructions or feedback to an operator.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Sowmya Ballakur, Robert J. Beetel, Paul Friedrichs, David Herzfeld, Andrew Wu, Denise Zarins, Mark S. Leung
  • Publication number: 20210251524
    Abstract: Fetal tissue oxygenation may be performed transabdominally by, for example, receiving a plurality of detected electronic signals that correspond to light emitted from a pregnant mammal's abdomen and a fetus contained therein that has been detected by the detector and converted into the detected electronic signal. An indication of a depth of the fetus within the pregnant mammal's abdomen may be received and a portion of the detected electronic signals that correspond to light that was incident upon the fetus may be isolated responsively to the indication of the depth of the fetus using, for example, time of flight of photons that correspond to the detected electronic signals. A fetal tissue oxygen saturation level may then be determined using the isolated portion of the detected electronic signals that correspond to light that was incident upon the fetus.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 19, 2021
    Inventors: Neil Padharia RAY, Mark Andrew ROSEN, Adam JACOBS, Denise ZARINS, Kenneth HOLT, Jana M. KAINERSTORFER, David BOAS
  • Publication number: 20210205008
    Abstract: Described here are methods and systems for the manipulation of ovarian tissues. The methods and systems may be used in the treatment of polycystic ovary syndrome (PCOS). The systems and methods may be useful in the treatment of infertility associated with PCOS.
    Type: Application
    Filed: March 4, 2021
    Publication date: July 8, 2021
    Applicant: AblaCare, Inc.
    Inventors: Denise ZARINS, Neil BARMAN, Garrett SCHWAB, Roger OSBORNE, Douglas SUTTON
  • Patent number: 11033328
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: June 15, 2021
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Mark E. Deem, Hanson Gifford, III, Denise Zarins, Douglas Sutton, Erik Thai, Mark Gelfand, Howard R. Levin
  • Patent number: 11006999
    Abstract: The present disclosure relates to devices, systems and methods for evaluating the success of a treatment applied to tissue in a patient, such as a radio frequency ablative treatment used to neuromodulate nerves associated with the renal artery. A system monitors parameters or values generated during the course of a treatment. Feedback provided to an operator is based on the monitored values and relates to an assessment of the likelihood that a completed treatment was technically successful. In other embodiments, parameters or values generated during the course of an incomplete treatment (such as due to high temperature or high impedance conditions) may be evaluated to provide additional instructions or feedback to an operator.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 18, 2021
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Sowmya Ballakur, Robert J. Beetel, Paul Friedrichs, David Herzfeld, Andrew Wu, Denise Zarins, Mark S. Leung
  • Patent number: 10987036
    Abstract: Fetal tissue oxygenation may be performed transabdominally by, for example, receiving a plurality of detected electronic signals that correspond to light emitted from a pregnant mammal's abdomen and a fetus contained therein that has been detected by the detector and converted into the detected electronic signal. An indication of a depth of the fetus within the pregnant mammal's abdomen may be received and a portion of the detected electronic signals that correspond to light that was incident upon the fetus may be isolated responsively to the indication of the depth of the fetus using, for example, time of flight of photons that correspond to the detected electronic signals. A fetal tissue oxygen saturation level may then be determined using the isolated portion of the detected electronic signals that correspond to light that was incident upon the fetus.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: April 27, 2021
    Assignee: RAYDIANT OXIMETRY, INC.
    Inventors: Neil Padharia Ray, Mark Andrew Rosen, Adam Jacobs, Denise Zarins, Kenneth Holt, Jana M Kainerstorfer, David Boas
  • Publication number: 20210068886
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda Francis, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Patent number: 10939955
    Abstract: Described here are methods and systems for the manipulation of ovarian tissues. The methods and systems may be used in the treatment of polycystic ovary syndrome (PCOS). The systems and methods may be useful in the treatment of infertility associated with PCOS.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: March 9, 2021
    Assignee: AblaCare, Inc.
    Inventors: Denise Zarins, Neil Barman, Garrett Schwab, Roger Osborne, Douglas Sutton
  • Patent number: 10850091
    Abstract: Methods and apparatus are provided for bilateral renal neuromodulation, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: December 1, 2020
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 10842547
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: November 24, 2020
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Mark Gelfand, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Mark S. Leung, Gwenda Francis, Barry Mullins, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Michael Turovskiy
  • Publication number: 20200360076
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 19, 2020
    Inventors: Andrew Wu, Benjamin J. Clark, Erik Thai, Nicolas Zadno, Denise Zarins
  • Publication number: 20200323467
    Abstract: Fetal tissue oxygenation may be performed transabdominally by, for example, receiving a plurality of detected electronic signals that correspond to light emitted from a pregnant mammal's abdomen and a fetus contained therein that has been detected by the detector and converted into the detected electronic signal. An indication of a depth of the fetus within the pregnant mammal's abdomen may be received and a portion of the detected electronic signals that correspond to light that was incident upon the fetus may be isolated responsively to the indication of the depth of the fetus using, for example, time of flight of photons that correspond to the detected electronic signals. A fetal tissue oxygen saturation level may then be determined using the isolated portion of the detected electronic signals that correspond to light that was incident upon the fetus.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Inventors: Neil Padharia RAY, Mark Andrew ROSEN, Adam JACOBS, Denise ZARINS, Kenneth HOLT, Jana M KAINERSTORFER, David BOAS
  • Patent number: 10722288
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: July 28, 2020
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Andrew Wu, Benjamin J. Clark, Erik Thai, Nicolas Zadno, Denise Zarins
  • Publication number: 20200214761
    Abstract: Described here are methods and systems for the manipulation of ovarian tissues. The methods and systems may be used in the treatment of polycystic ovary syndrome (PCOS). The systems and methods may be useful in the treatment of infertility associated with PCOS.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 9, 2020
    Applicant: Ziva Medical, Inc.
    Inventors: Denise ZARINS, Neil BARMAN, Garrett SCHWAB, Roger OSBORNE, Douglas SUTTON
  • Publication number: 20200214765
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 9, 2020
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Patent number: 10595936
    Abstract: Described here are methods and systems for the manipulation of ovarian tissues. The methods and systems may be used in the treatment of polycystic ovary syndrome (PCOS). The systems and methods may be useful in the treatment of infertility associated with PCOS.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: March 24, 2020
    Assignee: Ziva Medical, Inc.
    Inventors: Denise Zarins, Neil Barman, Garrett Schwab, Roger Osborne, Douglas Sutton
  • Patent number: 10561460
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: February 18, 2020
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Patent number: 10537734
    Abstract: Methods and apparatus are provided for multi-vessel neuromodulation, e.g., via a pulsed electric field. Such multi-vessel neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, the multi-vessel neuromodulation is applied to neural fibers that contribute to renal function. Such multi-vessel neuromodulation optionally may be performed bilaterally.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: January 21, 2020
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventor: Denise Zarins
  • Patent number: 10537385
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: January 21, 2020
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Patent number: 10441356
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: October 15, 2019
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Denise Zarins, Andrew Wu, Hanson Gifford, III, Mark Deem, Mark Gelfand, Howard R. Levin