Patents by Inventor Dennis M. Knecht

Dennis M. Knecht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8616783
    Abstract: Fiber optic assemblies including a plurality of optical fibers in a connector having a ferrule are disclosed. The ferrule has a front end face and a plurality of bores with the plurality of optical fibers being disposed within one of the respective plurality of bores. The fiber optic assemblies have the plurality of optical fibers recessed from the front end face of the ferrule by a suitable distance to inhibit physical contact of the plurality of optical fibers when mated with a complementary connection. Consequently, the fiber optic assemblies are suited for hundreds or thousands of connections and disconnections (i.e., mating cycles) with reduced susceptibility from damage and/or optical attenuation caused by dirt, debris and the like as expected with the consumer electronic/device environments.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 31, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Radawan Hall, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20130322824
    Abstract: Optical connectors, optical coupling systems, and methods of optical coupling are disclosed. In one embodiment, an optical connector includes a plug housing, at least one optical fiber, an internal coupling surface, and a translating element. The translating element has a first coupling surface, a second coupling surface, and at least one optical component within the translating element. The translating element is biased such that when the optical connector is in a disengaged state, the translating element is positioned toward an optical connector opening and the second coupling surface of the translating element is displaced from the internal coupling surface. When the optical connector is in an engaged state, the translating element is positioned such that the second coupling surface of the translating element is positioned at the internal coupling surface and the optical fiber is optically coupled to the optical component.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Inventors: Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20130322835
    Abstract: Angular alignment of optical fibers for fiber optic ribbon cables and related methods are disclosed. Employing optical fibers disposed in a ribbon matrix can increase bandwidth between two interconnection points. In one embodiment, optical fibers are angularly aligned during the process of forming a fiber optic ribbon cable. To angularly align the optical fibers, each of the optical fibers include an angular alignment feature to facilitate uniform or substantially uniform angular orientation along a cable when the optical fibers are prepared to be disposed in the ribbon matrix to form a fiber optic ribbon cable. By purposefully aligning the optical fibers during formation of the fiber optic ribbon cable, end portions of the optical fibers are aligned in the ribbon matrix. Thus, end portions of the ribbon matrix are not required to be removed to expose and align the end portions of optical fibers when the ribbon cable is connectorized.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Inventors: Douglas L. Butler, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Patent number: 8582938
    Abstract: Fiber optic distribution cables and methods for manufacturing the same are disclosed. The fiber optic distribution cables present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. In one fiber optic distribution cable, a length of distribution optical fiber that is removed from the distribution cable and presented outward of the protective covering is longer than the opening at access location. In another embodiment, a demarcation point is provided for inhibiting the movement (i.e., pistoning) of the distribution optical fiber into and out of the distribution cable. In still another embodiment, an indexing tube is provided for indexing a tether tube within the indexing tube for providing the distribution optical fiber with a suitable excess fiber length. Additionally, other embodiments may include a fiber optic distribution cable having a dry construction and/or a non-round cross-section.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: November 12, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph T. Cody, Dennis M. Knecht, Christopher Paul Lewallen, James P. Luther
  • Patent number: 8556682
    Abstract: A method of cleaving an optical fiber using a disposable abrasive film is disclosed. The method includes preparing an end of an optical fiber by exposing a length of the optical fiber. The exposed optical fiber is brought into contact with a tangential swipe formed of abrasive film to cause the optical fiber to cleave substantially at the location of contact leaving an optical fiber stub with a cleaved end. The optical fiber stub is polished with a polishing film having a coarse grit and may be polished a second time with a polishing film having a fine grit.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: October 15, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Radawan Hall, Dennis M. Knecht
  • Publication number: 20130156377
    Abstract: Methods of reducing and/or avoiding fiber ordering during preparations of a multi-fiber, fiber optic cable to provide a connectorized multi-fiber, fiber optic cable system, and related fiber optic cables and assemblies are also disclosed. The embodiments disclosed herein allow for a section of a multi-fiber, fiber optic cable to be prepared to form two or more connectorized fiber optic cables as part of a multi-fiber cable system without requiring specific fiber ordering in the fiber optic connectors. The natural ordering of the optical fibers in the fiber optic cable is fixed in place in at least one section of the fiber optic cable before the optical fibers are cut to form adjacent fiber optic connectors in the cable system. Thus, the fiber ordering between adjacent fiber optic connectors in the cable system will be the same even though the fiber ordering of the optical fibers was random during cable preparations.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventors: Jeffery A. DeMeritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther, James S. Sutherland
  • Publication number: 20130136400
    Abstract: Optical couplings for optically coupling one or more devices are disclosed. According to one embodiment, an optical coupling includes an optical coupling body, an optical interface, and a coded magnetic array located at the optical coupling body. The coded magnetic array has a plurality of magnetic regions configured for mating the optical interface. The optical coupling further includes a reflective surface within the optical coupling body and positioned along an optical path of the optical coupling body. The reflective surface is operable to redirect an optical signal propagating within the optical coupling body such that it propagates through the optical interface. The optical coupling may be configured as a plug, such as a plug of a connector assembly, or as a receptacle, such as a receptacle on an electronic device.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Inventors: Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20120263423
    Abstract: Adapters for receiving high-fiber count splicing connector assemblies are disclosed. The adapter includes a splice guide insert having a first plurality of bores that extend from a first end of the splice guide and a second plurality of bores that extend from a second end of the splice guide. The splice guide aligns the optical fibers of respective splicing connector assemblies received on opposite ends of the adapter for making an optical connection. Additionally, methods are disclosed for laser processing multiple rows of fibers.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Inventors: Michael De Jong, Radawan Hall, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20120216829
    Abstract: A cleaning tool for cleaning internal optical components of a fiber optic connector includes a cleaning strip that is advanced past one or more optical surfaces of the connector to wipe the connector free of contaminants. The cleaning tool includes a drive mechanism that is operated by rotating a drive, thereby advancing the cleaning strip along a cleaning strip path and into contact with the one or more optical surfaces. The cleaning tool comprises a cleaning tip that functions to place the cleaning strip in proper alignment within the connector in order to clean the optical surfaces that are not available for cleaning at the endface of the connector. Alignment features are provided in the cleaning tip to properly position the cleaning strip relative the optical surfaces.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Inventors: Dave E. Cunningham, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20120204379
    Abstract: A system for cleaning internal optical components of a fiber optic connector includes a source of cleaning medium such as compressed air connected to a cleaning tip. The cleaning tip has a body and a tongue that is configured to be inserted into the end of the fiber optic connector. Nozzles are formed on the tongue. The tongue may have features to open shutters and/or other protective features in the connector that normally protect the internal optical components. When the tongue is inserted into the end of the connector, the nozzles are positioned adjacent optical components to be cleaned and compressed air is delivered through the nozzles to clean the components. Backwash can be exhausted around the tongue or through the tongue to eject contaminants from the fiber optic connector.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 16, 2012
    Inventors: Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20120163754
    Abstract: Optical couplings for making and optical connection between one or more devices are disclosed. In one embodiment, an optical coupling includes a coupling face, an optical interface within the coupling face, an optical component positioned within the optical interface, and at least one coded magnetic array. The at least one coded magnetic array may include a plurality of magnetic regions configured aid in mating the optical component with a corresponding optical component of a complementary mated optical coupling to a predetermined tolerance for optical communication. Optical cable assemblies and electronics devices having optical couplings with optical interfaces using coded magnetic arrays are also disclosed.
    Type: Application
    Filed: August 30, 2011
    Publication date: June 28, 2012
    Inventors: Seldon D. Benjamin, Jeffery A. DeMeritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20120155803
    Abstract: Ferrule assemblies having at least one coded magnetic array are disclosed. In one embodiment, a ferrule assembly includes a ferrule body having a coupling surface and a coded magnetic array having a plurality of magnetic regions. The coded magnetic array may be located within the coupling surface. The ferrule assembly further includes a lens component located within the ferrule body. The lens component may have a facet at the coupling surface of the ferrule body at a predetermined angle. In another embodiment, a translating ferrule assembly includes an optical interface and a coded magnetic array, and is configured to translate within a connector housing of an optical connector when coupled to an electronics device. Optical couplings having a coded magnetic array and sockets for receiving a connector are also disclosed.
    Type: Application
    Filed: August 30, 2011
    Publication date: June 21, 2012
    Inventors: Seldon D. Benjamin, Jeffery A. DeMerritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20120018481
    Abstract: A method of cleaving an optical fiber using a disposable abrasive film is disclosed. The method includes preparing an end of an optical fiber by exposing a length of the optical fiber. The exposed optical fiber is brought into contact with a tangential swipe formed of abrasive film to cause the optical fiber to cleave substantially at the location of contact leaving an optical fiber stub with a cleaved end. The optical fiber stub is polished with a polishing film having a coarse grit and may be polished a second time with a polishing film having a fine grit.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Inventors: Radawan Hall, Dennis M. Knecht
  • Patent number: 8059929
    Abstract: Fiber optic distribution cables and methods for manufacturing the same are disclosed. The methods present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. Specifically, the methods include presenting a length of distribution optical fiber outward of the protective covering that is longer than the opening at access location. After the opening is made in the protective covering at the access location, the optical fibers for distribution are selected. Then a tool according to the present invention is positioned about the optical fibers selected for distribution and slid within the protective covering of the fiber optic distribution cable until it reaches a cutting location within the fiber optic distribution cable. Consequently, the tool is positioned for cutting the distribution optical fiber at a cutting location within the fiber optic distribution cable at a downstream location.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 15, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Joseph T. Cody, Dennis M. Knecht, Christopher Paul Lewallen, James P. Luther
  • Publication number: 20110262076
    Abstract: Fiber optic assemblies including a plurality of optical fibers in a connector having a ferrule are disclosed. The ferrule has a front end face and a plurality of bores with the plurality of optical fibers being disposed within one of the respective plurality of bores. The fiber optic assemblies have the plurality of optical fibers recessed from the front end face of the ferrule by a suitable distance to inhibit physical contact of the plurality of optical fibers when mated with a complementary connection. Consequently, the fiber optic assemblies are suited for hundreds or thousands of connections and disconnections (i.e., mating cycles) with reduced susceptibility from damage and/or optical attenuation caused by dirt, debris and the like as expected with the consumer electronic/device environments.
    Type: Application
    Filed: November 30, 2010
    Publication date: October 27, 2011
    Inventors: Radawan Hall, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20110229089
    Abstract: Small-form-factor fiber optic interface assemblies (180) for electronic devices (100) are disclosed. The fiber optic interface assemblies include a receptacle (120) configured to matingly engage with a plug (20) of a fiber optic cable assembly (10). Example assemblies include a flexible mount (228) supported by a circuit board (150) and configured to absorb a mechanical force when the plug is mated to the receptacle. The receptacle aperture (223) has at least one transverse dimension (L, W) of between about 2 mm and 4 mm. The assemblies can support both optical and electrical communication and functionality.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 22, 2011
    Inventors: Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20110229088
    Abstract: A fiber optic interface device (10) with a positionable cover (100) is disclosed. The device includes a ferrule (50) supported by a housing (21). The ferrule has a front section (65) with a surface (66) and is configured to support at least one optical path interface (OPI) at the front-section surface. The cover supports a cleaning member (170) and is positionable in open and closed positions. In the closed position, the cleaning member is proximate to the at least one optical path interface, and in the open position the at least one optical path interface is exposed.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 22, 2011
    Inventors: Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20110229090
    Abstract: Fiber optic interface devices (20, 320) for electronic devices (300) are disclosed. A plug-type fiber optic interface (20) has an axially moveable multi-fiber ferrule (100) that supports optical fibers (52) or a combination of optical fibers and gradient-index lenses (600). A resilient member (150) serves to provide the ferrule with forward-bias and rear-bias positions relative to a recessed front end (22) of a housing (21). A fiber optic interface assembly (570) that includes mated plug and receptacle fiber optic interface devices (20, 320) is also disclosed.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 22, 2011
    Inventors: Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20110229083
    Abstract: Optical fiber ferrules (10, 20) for making optical or optical and electrical connections are disclosed, along with receptacle and plug fiber optic interface devices (60, 70) using the ferrules, and cable assemblies (6, 7) using the fiber optic interface devices. The optical fiber ferrules support optical pathways (14) and have front ends (12F, 22F) with mating geometries that facilitate a relatively high number of mating/unmating cycles. The ferrule is translatable within the enclosure (62e, 72e). Resilient members (75) provide the ferrule with forward-bias and rear-bias positions when the fiber optic interface device is un-mated and mated, respectively.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 22, 2011
    Inventors: Paulo Clóvis Dainese Júnior, Michael de Jong, Jeffery Alan DeMeritt, Micah C. Isenhour, Dennis M. Knecht, James P. Luther
  • Publication number: 20110198324
    Abstract: A method for laser processing arrays of optical fibers and high-fiber count splicing connectors and adapters are disclosed. The method includes the steps of providing a structure having optical fibers arranged in a plurality of rows and placing a protection element adjacent to a first row of optical fibers and a second row of optical fibers. Thereafter, the first row of optical fibers can be processed using the laser. The protection element may also be used to move optical fibers. In one embodiment, the protection element has a first portion and a second portion that have relative movement therebetween. In other variations, an absorption element may be provided adjacent the first row of optical fibers for inhibiting incidental damage to the structure.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 18, 2011
    Inventors: Michael de Jong, Radawan Hall, Micah C. Isenhour, Dennis M. Knecht, James P. Luther