Patents by Inventor Dennis Noppeney

Dennis Noppeney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965976
    Abstract: In accordance with an embodiment, a method of operating a radar system includes receiving radar configuration data from a host, and receiving a start command from the host after receiving the radar configuration data. The radar configuration data includes chirp parameters and frame sequence settings. After receiving the start command, configuring a frequency generation circuit is configured with the chirp parameters and radar frames are triggered at a preselected rate.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: April 23, 2024
    Assignee: Infineon Technologies AG
    Inventors: Saverio Trotta, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Ashutosh Baheti, Ismail Nasr, Jagjit Singh Bal
  • Publication number: 20240036161
    Abstract: In an embodiment, a method includes: receiving a global trigger with a first millimeter-wave radar; receiving the global trigger with a second millimeter-wave radar; generating a first internal trigger of the first millimeter-wave radar after a first offset duration from the global trigger; generating a second internal trigger of the second millimeter-wave radar after a second offset duration from the global trigger; start transmitting first millimeter-wave radar signals with the first millimeter-wave radar based on the first internal trigger; and start transmitting second millimeter-wave radar signals with the second millimeter-wave radar based on the second internal trigger, where the second offset duration is different from the first offset duration, and where the first and second millimeter-wave radar signals are transmitted sequentially so as to exhibit no temporal overlap.
    Type: Application
    Filed: October 5, 2023
    Publication date: February 1, 2024
    Inventors: Christoph Rumpler, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Saverio Trotta
  • Patent number: 11808883
    Abstract: In an embodiment, a method includes: receiving a global trigger with a first millimeter-wave radar; receiving the global trigger with a second millimeter-wave radar; generating a first internal trigger of the first millimeter-wave radar after a first offset duration from the global trigger; generating a second internal trigger of the second millimeter-wave radar after a second offset duration from the global trigger; start transmitting first millimeter-wave radar signals with the first millimeter-wave radar based on the first internal trigger; and start transmitting second millimeter-wave radar signals with the second millimeter-wave radar based on the second internal trigger, where the second offset duration is different from the first offset duration, and where the first and second millimeter-wave radar signals are transmitted sequentially so as to exhibit no temporal overlap.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Christoph Rumpler, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Saverio Trotta
  • Publication number: 20230258771
    Abstract: In an embodiment, a method for testing a millimeter-wave radar module includes: providing power to the millimeter-wave radar module; performing a plurality of tests indicative of a performance level of the millimeter-wave radar module; comparing respective results from the plurality of tests with corresponding test limits; and generating a flag when a result from a test of the plurality of test is outside the corresponding test limits, where performing the plurality of tests includes: transmitting a signal with a transmitting antenna coupled to a millimeter-wave radar sensor, modulating the transmitted signal with a test signal, and capturing first data from a first receiving antenna using an analog-to-digital converter of the millimeter-wave radar sensor, where generating the flag includes generating the flag based on the captured first data.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 17, 2023
    Inventors: Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Saverio Trotta
  • Patent number: 11662430
    Abstract: In an embodiment, a method for testing a millimeter-wave radar module includes: providing power to the millimeter-wave radar module; performing a plurality of tests indicative of a performance level of the millimeter-wave radar module; comparing respective results from the plurality of tests with corresponding test limits; and generating a flag when a result from a test of the plurality of test is outside the corresponding test limits, where performing the plurality of tests includes: transmitting a signal with a transmitting antenna coupled to a millimeter-wave radar sensor, modulating the transmitted signal with a test signal, and capturing first data from a first receiving antenna using an analog-to-digital converter of the millimeter-wave radar sensor, where generating the flag includes generating the flag based on the captured first data.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: May 30, 2023
    Assignee: Infineon Technologies AG
    Inventors: Reinhard-Wolfgang Jungmaier, Saverio Trotta, Dennis Noppeney
  • Patent number: 11592479
    Abstract: A test assembly for testing an antenna-in-package (AiP) device includes a socket over a circuit board, where the socket includes an opening for receiving the AiP device; a plunger configured to move along sidewalls of the opening, where during testing of the AiP device, the plunger is configured to cause the AiP device to be pressed towards the circuit board such that the AiP device is operatively coupled to the circuit board via input/output connections of the AiP device and of the circuit board; and a loadboard disposed within the socket and between the plunger and the AiP device, where the loadboard includes a coupling structure configured to be electromagnetically coupled to a transmit antenna and to a receive antenna of the AiP device, so that testing signals transmitted by the transmit antenna are conveyed to the receive antenna externally relative to the AiP device through the coupling structure.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Saverio Trotta, Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Dennis Noppeney
  • Patent number: 11550046
    Abstract: In accordance with an embodiment, an apparatus includes a millimeter wave radar sensor system configured to detect a location of a body of a person, where the detected location of the body of the person defines a direction of the person relative to the apparatus; and a microphone system configured to generate at least one audio beam as a function at least of the direction.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 10, 2023
    Assignee: Infineon Technologies AG
    Inventors: Reinhard-Wolfgang Jungmaier, Ashutosh Baheti, Jagjit Singh Bal, Thomas Gmeinder, Henk Muller, Shyam Nallabolu, Dennis Noppeney, Avik Santra, Raghavendran Vagarappan Ulaganathan
  • Publication number: 20220299601
    Abstract: In an embodiment, a method for testing a millimeter-wave radar module includes: providing power to the millimeter-wave radar module; performing a plurality of tests indicative of a performance level of the millimeter-wave radar module; comparing respective results from the plurality of tests with corresponding test limits; and generating a flag when a result from a test of the plurality of test is outside the corresponding test limits, where performing the plurality of tests includes: transmitting a signal with a transmitting antenna coupled to a millimeter-wave radar sensor, modulating the transmitted signal with a test signal, and capturing first data from a first receiving antenna using an analog-to-digital converter of the millimeter-wave radar sensor, where generating the flag includes generating the flag based on the captured first data.
    Type: Application
    Filed: March 17, 2021
    Publication date: September 22, 2022
    Inventors: Reinhard-Wolfgang Jungmaier, Saverio Trotta, Dennis Noppeney
  • Patent number: 11316597
    Abstract: In accordance with an embodiment, a method includes: receiving, by an adjustable frequency doubling circuit, a first clock signal having a first clock frequency; using the adjustable frequency doubling circuit, generating a second clock signal having a second clock frequency that is twice the first clock frequency; measuring a duty cycle parameter of the second clock signal, where the duty cycle parameter is dependent on a duty cycle of the first clock signal or a duty cycle of the second clock signal; and using the adjustable frequency doubling circuit, adjusting the duty cycle of the first clock signal or the second clock signal based on the measuring.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: April 26, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Siegfried Albel, Michael Aichner, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Christoph Rumpler, Saverio Trotta
  • Patent number: 11188495
    Abstract: In an embodiment, a method for writing to a set of serial peripheral interface (SPI) slaves coupled to an SPI bus includes: disabling master in slave out (MISO) drivers of the set of SPI slaves using the SPI bus; after disabling the MISO drivers, setting respective slave selection terminals of the set of SPI slaves to an active state; and after setting the respective slave selection terminals of the set of SPI slaves to the active state, simultaneously writing data to the set of SPI slaves using a master out slave in (MOSI) line.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 30, 2021
    Assignee: Infineon Technologies AG
    Inventors: Christoph Rumpler, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Saverio Trotta
  • Publication number: 20210341536
    Abstract: A test assembly for testing an antenna-in-package (AiP) device includes a socket over a circuit board, where the socket includes an opening for receiving the AiP device; a plunger configured to move along sidewalls of the opening, where during testing of the AiP device, the plunger is configured to cause the AiP device to be pressed towards the circuit board such that the AiP device is operatively coupled to the circuit board via input/output connections of the AiP device and of the circuit board; and a loadboard disposed within the socket and between the plunger and the AiP device, where the loadboard includes a coupling structure configured to be electromagnetically coupled to a transmit antenna and to a receive antenna of the AiP device, so that testing signals transmitted by the transmit antenna are conveyed to the receive antenna externally relative to the AiP device through the coupling structure.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Saverio Trotta, Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Dennis Noppeney
  • Patent number: 11092643
    Abstract: A test assembly for testing an antenna-in-package (AiP) device includes a socket over a circuit board, where the socket includes an opening for receiving the AiP device; a plunger configured to move along sidewalls of the opening, where during testing of the AiP device, the plunger is configured to cause the AiP device to be pressed towards the circuit board such that the AiP device is operatively coupled to the circuit board via input/output connections of the AiP device and of the circuit board; and a loadboard disposed within the socket and between the plunger and the AiP device, where the loadboard includes a coupling structure configured to be electromagnetically coupled to a transmit antenna and to a receive antenna of the AiP device, so that testing signals transmitted by the transmit antenna are conveyed to the receive antenna externally relative to the AiP device through the coupling structure.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 17, 2021
    Assignee: Infineon Technologies AG
    Inventors: Saverio Trotta, Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Dennis Noppeney
  • Publication number: 20210239792
    Abstract: In an embodiment, a method includes: receiving a global trigger with a first millimeter-wave radar; receiving the global trigger with a second millimeter-wave radar; generating a first internal trigger of the first millimeter-wave radar after a first offset duration from the global trigger; generating a second internal trigger of the second millimeter-wave radar after a second offset duration from the global trigger; start transmitting first millimeter-wave radar signals with the first millimeter-wave radar based on the first internal trigger; and start transmitting second millimeter-wave radar signals with the second millimeter-wave radar based on the second internal trigger, where the second offset duration is different from the first offset duration, and where the first and second millimeter-wave radar signals are transmitted sequentially so as to exhibit no temporal overlap.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 5, 2021
    Inventors: Christoph Rumpler, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Saverio Trotta
  • Publication number: 20210240656
    Abstract: In an embodiment, a method for writing to a set of serial peripheral interface (SPI) slaves coupled to an SPI bus includes: disabling master in slave out (MISO) drivers of the set of SPI slaves using the SPI bus; after disabling the MISO drivers, setting respective slave selection terminals of the set of SPI slaves to an active state; and after setting the respective slave selection terminals of the set of SPI slaves to the active state, simultaneously writing data to the set of SPI slaves using a master out slave in (MOSI) line.
    Type: Application
    Filed: January 31, 2020
    Publication date: August 5, 2021
    Inventors: Christoph Rumpler, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Saverio Trotta
  • Publication number: 20210194605
    Abstract: In accordance with an embodiment, a method includes: receiving, by an adjustable frequency doubling circuit, a first clock signal having a first clock frequency; using the adjustable frequency doubling circuit, generating a second clock signal having a second clock frequency that is twice the first clock frequency; measuring a duty cycle parameter of the second clock signal, where the duty cycle parameter is dependent on a duty cycle of the first clock signal or a duty cycle of the second clock signal; and using the adjustable frequency doubling circuit, adjusting the duty cycle of the first clock signal or the second clock signal based on the measuring.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Inventors: Siegfried Albel, Michael Aichner, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Christoph Rumpler, Saverio Trotta
  • Publication number: 20210033668
    Abstract: A test assembly for testing an antenna-in-package (AiP) device includes a socket over a circuit board, where the socket includes an opening for receiving the AiP device; a plunger configured to move along sidewalls of the opening, where during testing of the AiP device, the plunger is configured to cause the AiP device to be pressed towards the circuit board such that the AiP device is operatively coupled to the circuit board via input/output connections of the AiP device and of the circuit board; and a loadboard disposed within the socket and between the plunger and the AiP device, where the loadboard includes a coupling structure configured to be electromagnetically coupled to a transmit antenna and to a receive antenna of the AiP device, so that testing signals transmitted by the transmit antenna are conveyed to the receive antenna externally relative to the AiP device through the coupling structure.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Saverio Trotta, Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Dennis Noppeney
  • Patent number: 10911165
    Abstract: In accordance with an embodiment, a method includes: receiving, by an adjustable frequency doubling circuit, a first clock signal having a first clock frequency; using the adjustable frequency doubling circuit, generating a second clock signal having a second clock frequency that is twice the first clock frequency; measuring a duty cycle parameter of the second clock signal, where the duty cycle parameter is dependent on a duty cycle of the first clock signal or a duty cycle of the second clock signal; and using the adjustable frequency doubling circuit, adjusting the duty cycle of the first clock signal or the second clock signal based on the measuring.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: February 2, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Siegfried Albel, Michael Aichner, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Christoph Rumpler, Saverio Trotta
  • Publication number: 20200348393
    Abstract: In accordance with an embodiment, a method of operating a radar system includes receiving radar configuration data from a host, and receiving a start command from the host after receiving the radar configuration data. The radar configuration data includes chirp parameters and frame sequence settings. After receiving the start command, configuring a frequency generation circuit is configured with the chirp parameters and radar frames are triggered at a preselected rate.
    Type: Application
    Filed: June 17, 2020
    Publication date: November 5, 2020
    Inventors: Saverio Trotta, Reinhard-Wolfgang Jungmaier, Dennis Noppeney, Ashutosh Baheti, Ismail Nasr, Jagjit Singh Bal
  • Patent number: 10725150
    Abstract: In accordance with an embodiment, a method of operating a radar system includes receiving radar configuration data from a host, and receiving a start command from the host after receiving the radar configuration data. The radar configuration data includes chirp parameters and frame sequence settings. After receiving the start command, configuring a frequency generation circuit is configured with the chirp parameters and radar frames are triggered at a preselected rate.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: July 28, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Saverio Trotta, Reinhard Wolfgang Jungmaier, Dennis Noppeney, Ashutosh Baheti, Ismail Nasr, Jagjit Singh Bal
  • Publication number: 20190265345
    Abstract: In accordance with an embodiment, an apparatus includes a millimeter wave radar sensor system configured to detect a location of a body of a person, where the detected location of the body of the person defines a direction of the person relative to the apparatus; and a microphone system configured to generate at least one audio beam as a function at least of the direction.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 29, 2019
    Inventors: Reinhard-Wolfgang Jungmaier, Ashutosh Baheti, Jagjit Singh Bal, Thomas Gmeinder, Henk Muller, Shyam Nallabolu, Dennis Noppeney, Avik Santra, Raghavendran Vagarappan Ulaganathan