Patents by Inventor Dennis R. Dorman

Dennis R. Dorman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933301
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: March 19, 2024
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Dennis R. Dorman, John R. Sauls
  • Publication number: 20230228269
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Application
    Filed: October 31, 2022
    Publication date: July 20, 2023
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 11486396
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: November 1, 2022
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Dennis R. Dorman, John R. Sauls
  • Publication number: 20210285447
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 11022117
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: June 1, 2021
    Assignee: Trane International Inc.
    Inventors: Dennis M. Beekman, Daniel R. Crum, Timothy Sean Hagen, Dennis R. Dorman, John R. Sauls
  • Patent number: 10941770
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed. A method for sizing at least two variable capacity screw compressors and a refrigeration chiller incorporating a variable capacity screw compressor are separately presented.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 9, 2021
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 9556875
    Abstract: A centrifugal compressor assembly for compressing refrigerant in a 250-ton capacity or larger chiller system comprising a motor, preferably a compact, high energy density motor or permanent magnet motor, for driving a shaft at a range of sustained operating speeds under the control of a variable speed drive. Another embodiment of the centrifugal compressor assembly comprises a mixed flow impeller and a vaneless diffuser sized such that a final stage compressor operates with an optimal specific speed range for targeted combinations of head and capacity, while a non-final stage compressor operates above the optimum specific speed of the final stage compressor. Another embodiment of the centrifugal compressor assembly comprises an integrated inlet flow conditioning assembly to condition flow of refrigerant into an impeller to achieve a target approximately constant angle swirl distribution with minimal guide vane turning.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: January 31, 2017
    Assignee: TRANE INTERNATIONAL INC.
    Inventors: Paul F. Haley, Dennis R. Dorman, Frederic Byron Hamm, Jr., David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Publication number: 20150030489
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: Dennis M. Beekman, Daniel R. Crum, Timothy Sean Hagen, Dennis R. Dorman, John R. Sauls
  • Publication number: 20150030490
    Abstract: An improved bearing housing of a rotary screw compressor is described. The bearing housing is generally shorter than a convention bearing housing. The bearing housing can be configured to enclose and support radial bearings of the screw compressor. The bearing housing can be configured not to enclose axial bearings of the screw compressor in an axial direction.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: Dennis M. Beekman, Daniel R. Crum, Timothy Sean Hagen, Dennis R. Dorman, John R. Sauls
  • Publication number: 20150013360
    Abstract: A coaxial economizer for use in a chiller system comprising an inner housing and an outer housing having a common longitudinal axis. The outer housing has an inlet for receiving a fluid from a upstream compressor stage of a multistage compressor and an outlet for conveying a fluid to a downstream compressor stage of a multistage compressor. A flow chamber forms a fluid flow path about the inner housing. A flash chamber is coterminous with the flow chamber and flashes fluid in a liquid state to a gas state. A flow passage between said flash chamber and the flow chamber for conveying a flashed gas from the flash chamber to the flow chamber; wherein the flashed gas conveyed from the flash chamber and the fluid received from the inlet of the outer housing mix along the fluid flow path toward the outlet of the outer housing.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Inventors: Paul F. Haley, Dennis R. Dorman, Frederic Byron Hamm, David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Publication number: 20140127059
    Abstract: A centrifugal compressor assembly for compressing refrigerant in a 250-ton capacity or larger chiller system comprising a motor, preferably a compact, high energy density motor or permanent magnet motor, for driving a shaft at a range of sustained operating speeds under the control of a variable speed drive. Another embodiment of the centrifugal compressor assembly comprises a mixed flow impeller and a vaneless diffuser sized such that a final stage compressor operates with an optimal specific speed range for targeted combinations of head and capacity, while a non-final stage compressor operates above the optimum specific speed of the final stage compressor. Another embodiment of the centrifugal compressor assembly comprises an integrated inlet flow conditioning assembly to condition flow of refrigerant into an impeller to achieve a target approximately constant angle swirl distribution with minimal guide vane turning.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Applicant: Trane International, Inc.
    Inventors: Paul F. Haley, Dennis R. Dorman, Frederic Byron Hamm, JR., David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Patent number: 8627680
    Abstract: A centrifugal compressor assembly for compressing refrigerant in a 250-ton capacity or larger chiller system comprising a motor, preferably a compact, high energy density motor or permanent magnet motor, for driving a shaft at a range of sustained operating speeds under the control of a variable speed drive. Another embodiment of the centrifugal compressor assembly comprises a mixed flow impeller and a vaneless diffuser sized such that a final stage compressor operates with an optimal specific speed range for targeted combinations of head and capacity, while a non-final stage compressor operates above the optimum specific speed of the final stage compressor. Another embodiment of the centrifugal compressor assembly comprises an integrated inlet flow conditioning assembly to condition flow of refrigerant into an impeller to achieve a target approximately constant angle swirl distribution with minimal guide vane turning.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 14, 2014
    Assignee: Trane International, Inc.
    Inventors: Paul H. Haley, Dennis R. Dorman, Frederic Byron Hamm, Jr., David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Patent number: 8613555
    Abstract: An assembly includes a composite metal-polymer bushing having an outer metal layer with an inner surface, metal particles sintered to the inner surface, a polymer material between the metal particles, a finished interior surface collectively defined by the polymer material and exposed portions of the metal particles, a plurality of interstices formed between the metal particles and the polymer material, and a plurality of ridges defined by the polymer material that protrude above the metal particles. The ridges occupy at least about 8% of the area of a cylindrical reference surface nominally coinciding with the finished interior surface. The assembly also includes a crankshaft having a journal at least partially received within the bushing and supported by the finished interior surface. The journal is polished to a surface finish of about 0.1 microns or less to reduce a wear rate of the bushing.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: December 24, 2013
    Assignee: Trane International Inc.
    Inventors: Michael G. Benco, William E. Lapp, Derrick J. Lepak, Arther L. Butterworth, David Janda, Dennis R. Dorman
  • Publication number: 20130025304
    Abstract: A system and method of loading and unloading a compressor in a cooling system. The method includes detecting a temperature, determining a compressor should be turned on/off to supply/stop supplying cooling based on the temperature, turning the compressor on/off, and opening/closing a plurality of valves when the compressor is turned on/off.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Inventor: Dennis R. Dorman
  • Publication number: 20120288392
    Abstract: An assembly includes a composite metal-polymer bushing having an outer metal layer with an inner surface, metal particles sintered to the inner surface, a polymer material between the metal particles, a finished interior surface collectively defined by the polymer material and exposed portions of the metal particles, a plurality of interstices formed between the metal particles and the polymer material, and a plurality of ridges defined by the polymer material that protrude above the metal particles. The ridges occupy at least about 8% of the area of a cylindrical reference surface nominally coinciding with the finished interior surface. The assembly also includes a crankshaft having a journal at least partially received within the bushing and supported by the finished interior surface. The journal is polished to a surface finish of about 0.1 microns or less to reduce a wear rate of the bushing.
    Type: Application
    Filed: May 9, 2011
    Publication date: November 15, 2012
    Applicant: TRANE INTERNATIONAL INC.
    Inventors: Michael G. Benco, William E. Lapp, Derrick J. Lepak, Arther L. Butterworth, David Janda, Dennis R. Dorman
  • Publication number: 20120087815
    Abstract: A centrifugal compressor assembly for compressing refrigerant in a 250-ton capacity or larger chiller system comprising a motor, preferably a compact, high energy density motor or permanent magnet motor, for driving a shaft at a range of sustained operating speeds under the control of a variable speed drive. Another embodiment of the centrifugal compressor assembly comprises a mixed flow impeller and a vaneless diffuser sized such that a final stage compressor operates with an optimal specific speed range for targeted combinations of head and capacity, while a non-final stage compressor operates above the optimum specific speed of the final stage compressor. Another embodiment of the centrifugal compressor assembly comprises an integrated inlet flow conditioning assembly to condition flow of refrigerant into an impeller to achieve a target approximately constant angle swirl distribution with minimal guide vane turning.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 12, 2012
    Inventors: Paul H. Haley, Dennis R. Dorman, Frederic Byron Hamm, JR., David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Publication number: 20120017634
    Abstract: A variable capacity screw compressor comprises a suction port, at least two screw rotors and a discharge port being configured in relation to a selected rotational speed that operates at least one screw rotor at an optimum peripheral velocity that is independent of a peripheral velocity of the at least one screw rotor at a synchronous motor rotational speed for a rated screw compressor capacity. A motor is configured to drive the at least one screw rotor at a rotational speed at a full-load capacity that is substantially greater than the synchronous motor rotational speed at the rated screw compressor capacity. A variable speed drive receives a command signal from a controller and generates a control signal that drives the motor at the selected rotational speed. A method for sizing at least two variable capacity screw compressors and a refrigeration chiller incorporating a variable capacity screw compressor are separately presented.
    Type: Application
    Filed: July 20, 2010
    Publication date: January 26, 2012
    Applicant: TRANE INTERNATIONAL INC.
    Inventors: Dennis R. Dorman, John R. Sauls
  • Patent number: 8037713
    Abstract: A centrifugal compressor assembly for compressing refrigerant in a 250-ton capacity or larger chiller system comprising a motor, preferably a compact, high energy density motor or permanent magnet motor, for driving a shaft at a range of sustained operating speeds under the control of a variable speed drive. Another embodiment of the centrifugal compressor assembly comprises a mixed flow impeller and a vaneless diffuser sized such that a final stage compressor operates with an optimal specific speed range for targeted combinations of head and capacity, while a non-final stage compressor operates above the optimum specific speed of the final stage compressor.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: October 18, 2011
    Assignee: Trane International, Inc.
    Inventors: Paul F. Haley, Dennis R. Dorman, Frederic Byron Hamm, Jr., David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Publication number: 20090205360
    Abstract: A centrifugal compressor assembly for compressing refrigerant in a 250-ton capacity or larger chiller system comprising a motor, preferably a compact, high energy density motor or permanent magnet motor, for driving a shaft at a range of sustained operating speeds under the control of a variable speed drive. Another embodiment of the centrifugal compressor assembly comprises a mixed flow impeller and a vaneless diffuser sized such that a final stage compressor operates with an optimal specific speed range for targeted combinations of head and capacity, while a non-final stage compressor operates above the optimum specific speed of the final stage compressor.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Inventors: Paul H. Haley, Dennis R. Dorman, Frederic Byron Hamm, Jr., David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Patent number: 6532754
    Abstract: A method of optimizing the design of a chiller involves placing more emphasis on the chiller's performance at part load than at full load and rating the chiller accordingly. In some embodiments, compressor speed and impeller diameter are chosen to optimize the chiller's performance at part load. With the chosen impeller diameter, operation at full load is then achieved by increasing compressor speed, opening inlet guide vanes, and perhaps sacrificing some efficiency. If necessary, an inverter over speeds the compressor by driving it at a speed beyond that which the compressor would normally run if it were driven at the nominal line frequency of the electrical power feeding the inverter.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: March 18, 2003
    Assignee: American Standard International Inc.
    Inventors: Paul F. Haley, Dennis R. Dorman