Patents by Inventor Dennis Reimann

Dennis Reimann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959547
    Abstract: A sensor arrangement (46) for an automated transmission includes multiple axially parallel shift rails (4, 14, 24, 34) being axially displaceable by associated shift actuators (8, 18, 28, 38). The sensor arrangement (46) has multiple displacement sensors (48, 56, 64, 72) made up of a signal transmitter (50, 58, 66, 74) attached to a shift rail and a signal receiver (52, 60, 68, 76) fixedly arranged on a housing. The signal transmitters are in the form of a permanent magnet, and the signal receivers are in the form of a 3D Hall sensor. To detect an external magnetic interference field, which can corrupt the sensor signals from the displacement sensors (48, 56, 64, 72), the signal transmitters (50, 58, 66, 74) have identical axial alignments of their magnetic poles, and the signal receivers (52, 60, 68, 76) are in a common plane (80) that is horizontal in their installation position.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: April 16, 2024
    Assignee: ZF CV Systems Global GmbH
    Inventors: Dennis Reimann, Stefan Groetzinger, Robert Sohn
  • Publication number: 20230366462
    Abstract: A sensor arrangement (46) for an automated transmission includes multiple axially parallel shift rails (4, 14, 24, 34) being axially displaceable by associated shift actuators (8, 18, 28, 38). The sensor arrangement (46) has multiple displacement sensors (48, 56, 64, 72) made up of a signal transmitter (50, 58, 66, 74) attached to a shift rail and a signal receiver (52, 60, 68, 76) fixedly arranged on a housing. The signal transmitters are in the form of a permanent magnet, and the signal receivers are in the form of a 3D Hall sensor. To detect an external magnetic interference field, which can corrupt the sensor signals from the displacement sensors (48, 56, 64, 72), the signal transmitters (50, 58, 66, 74) have identical axial alignments of their magnetic poles, and the signal receivers (52, 60, 68, 76) are in a common plane (80) that is horizontal in their installation position.
    Type: Application
    Filed: September 27, 2021
    Publication date: November 16, 2023
    Inventors: Dennis Reimann, Stefan Groetzinger, Robert Sohn
  • Patent number: 11333242
    Abstract: A piston-cylinder assembly (1) has a cylindrical housing (3), with a main piston (2) and at least one trailing piston (11, 12). The trailing piston (11, 12) is axially guided on a cylindrical outer lateral face (38) of the main piston (2). The trailing piston (11, 12) has a thrust portion (13, 14) at one end near a piston web on the main piston, The thrust portion extends axially inward toward the piston web (10) A travel limiter (28) on the cylindrical housing limits a travel range of the trailing piston (11, 12) Under pressure, the trailing piston (11, 12) follows the main piston (2) until the trailing piston (11, 12) hits the travel limiter (28). The thrust portion (13, 14) of the trailing piston (11, 12) is shaped to fit into an associated recess (30, 31) in the piston web with a positive lock.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 17, 2022
    Assignee: WABCO GmbH
    Inventors: Hauke Karstens, Dennis Reimann
  • Patent number: 11060538
    Abstract: An actuator (1) for an automated or automatic transmission has a cylinder housing (3), a piston unit (2), and a piston rod (13). The piston unit (2) is coupled to the piston rod (13) and is arranged movably in the cylinder housing (3) along a longitudinal axis (4). The piston unit (2) separates two pressure chambers (8, 9) of variable volume in the cylinder housing (3). The pressure chambers are configured to load the piston unit (2) with compressed air on both sides. The two pressure chambers (8, 9) are connected to a valve unit (14) for switching between pressurization and purging of each of the two pressure chambers (8, 9). An end stop clamping device for damping at least one end stop of the piston unit (2) is arranged in the actuator (1). A pneumatically and a mechanically operating damping stage are provided improve the end stop damping device.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: July 13, 2021
    Assignee: WABCO GmbH
    Inventors: Romain Poux, Timo Gerlach, Dennis Reimann
  • Publication number: 20210108656
    Abstract: The invention relates to an actuator (1) for an automated or automatic transmission, having a cylinder housing (3), a piston unit (2), and a piston rod (13), wherein the piston unit (2) is coupled to the piston rod (13) and is arranged movably in the cylinder housing (3) along an axial longitudinal axis (4), wherein the piston unit (2) separates from each other two pressure chambers (8, 9) of variable volume in the cylinder housing (3), by means of which pressure chambers the piston unit (2) can be loaded with compressed air on both sides, wherein the two pressure chambers (8, 9) are connected to a valve unit (14) which is able to switch the pressurization or purging of each of the two pressure chambers (8, 9), and wherein an end stop damping device for damping at least one end stop of the piston unit (2) is arranged in the actuator (1). In order to improve the end stop damping device, a pneumatically and a mechanically operating damping stage are provided.
    Type: Application
    Filed: March 20, 2018
    Publication date: April 15, 2021
    Inventors: Romain Poux, Timo Gerlach, Dennis Reimann
  • Publication number: 20200318734
    Abstract: A piston-cylinder assembly (1) has a cylindrical housing (3), with a main piston (2) and at least one trailing piston (11, 12). The trailing piston (11, 12) is axially guided on a cylindrical outer lateral face (38) of the main piston (2). The trailing piston (11, 12) has a thrust portion (13, 14) at one end near a piston web on the main piston, The thrust portion extends axially inward toward the piston web (10) A travel limiter (28) on the cylindrical housing limits a travel range of the trailing piston (11, 12) Under pressure, the trailing piston (11, 12) follows the main piston (2) until the trailing piston (11, 12) hits the travel limiter (28). The thrust portion (13, 14) of the trailing piston (11, 12) is shaped to fit into an associated recess (30, 31) in the piston web with a positive lock.
    Type: Application
    Filed: September 24, 2018
    Publication date: October 8, 2020
    Inventors: Hauke Karstens, Dennis Reimann