Patents by Inventor Dennis Sinitsky

Dennis Sinitsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080151623
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Application
    Filed: March 10, 2008
    Publication date: June 26, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080153225
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Application
    Filed: March 10, 2008
    Publication date: June 26, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-Feng Fang, Dennis Sinitsky, Wingyu Leung
  • Patent number: 7391647
    Abstract: A non-volatile memory (NVM) cell fabricated on a semiconductor substrate, and including a floating gate electrode (which extends at least partially over all active regions of the NVM cell). The NVM cell also includes a PMOS access transistor located in a first n-type region, a PMOS control capacitor located in a second n-type region (separate from the first n-type region), and an NMOS programming transistor located in a p-type region. The floating gate electrode is a continuous electrode which extends over the active regions of the PMOS access transistor, the PMOS control capacitor and the NMOS programming transistor. Various array connections are provided for implementing arrays using this NVM cell. The PMOS access transistor and NMOS programming transistor can be replaced with an NMOS access transistor and a PMOS erase transistor, respectively, in an alternate embodiment.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: June 24, 2008
    Assignee: Mosys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080138950
    Abstract: A non-volatile memory cell with increased charge retention is fabricated on the same substrate as logic devices using a single-gate conventional logic process. A silicide-blocking dielectric structure is formed over a floating gate of the NVM cell, thereby preventing silicide formation over the floating gate, while allowing silicide formation over the logic devices. Silicide spiking and bridging are prevented in the NVM cell, as silicide-blocking dielectric structure prevents silicide metal from coming in contact with the floating gate or adjacent sidewall spacers. The silicide-blocking dielectric layer may expose portions of the active regions of the NVM cell, away from the floating gate and adjacent sidewall spacers, thereby enabling silicide formation on these portions. Alternately, the silicide-blocking dielectric layer may cover the active regions of the NVM cell during silicide formation. In this case, silicide-blocking dielectric layer may be thinned or removed after silicide formation.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 12, 2008
    Applicant: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20080093645
    Abstract: An embedded memory system includes an array of dynamic random access memory (DRAM) cells, which are isolated with deep trench isolation, and logic transistors, which are isolated with shallow trench isolation. Each DRAM cell includes an access transistor and a capacitor structure. The capacitor structure is fabricated by forming a metal-dielectric-semiconductor (MOS) capacitor in a deep trench isolation region. A cavity is formed in the deep trench isolation, thereby exposing a sidewall region of the substrate. The sidewall region is doped, thereby forming one electrode of the cell capacitor. A gate dielectric layer is formed over the exposed sidewall, and a polysilicon layer is deposited over the resulting structure, thereby filling the cavity. The polysilicon layer is patterned to form the gate electrode of the access transistor and a capacitor electrode, which extends over the sidewall region and upper surface of the substrate.
    Type: Application
    Filed: December 20, 2007
    Publication date: April 24, 2008
    Applicant: MOSYS, INC.
    Inventors: Dennis Sinitsky, Fu-Chieh Hsu
  • Patent number: 7323379
    Abstract: An embedded memory system includes an array of dynamic random access memory (DRAM) cells, which are isolated with deep trench isolation, and logic transistors, which are isolated with shallow trench isolation. Each DRAM cell includes an access transistor and a capacitor structure. The capacitor structure is fabricated by forming a metal-dielectric-semiconductor (MOS) capacitor in a deep trench isolation region. A cavity is formed in the deep trench isolation, thereby exposing a sidewall region of the substrate. The sidewall region is doped, thereby forming one electrode of the cell capacitor. A gate dielectric layer is formed over the exposed sidewall, and a polysilicon layer is deposited over the resulting structure, thereby filling the cavity. The polysilicon layer is patterned to form the gate electrode of the access transistor and a capacitor electrode, which extends over the sidewall region and upper surface of the substrate.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: January 29, 2008
    Assignee: MoSys, Inc.
    Inventors: Dennis Sinitsky, Fu-Chieh Hsu
  • Publication number: 20070247914
    Abstract: A non-volatile memory (NVM) cell fabricated on a semiconductor substrate, and including a floating gate electrode (which extends at least partially over all active regions of the NVM cell). The NVM cell also includes a PMOS access transistor located in a first n-type region, a PMOS control capacitor located in a second n-type region (separate from the first n-type region), and an NMOS programming transistor located in a p-type region. The floating gate electrode is a continuous electrode which extends over the active regions of the PMOS access transistor, the PMOS control capacitor and the NMOS programming transistor. Various array connections are provided for implementing arrays using this NVM cell. The PMOS access transistor and NMOS programming transistor can be replaced with an NMOS access transistor and a PMOS erase transistor, respectively, in an alternate embodiment.
    Type: Application
    Filed: April 11, 2006
    Publication date: October 25, 2007
    Applicant: Monolithic System Technology, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20070170489
    Abstract: A non-volatile memory cell with increased charge retention is fabricated on the same substrate as logic devices using a single-gate conventional logic process. A silicide-blocking dielectric structure is formed over a floating gate of the NVM cell, thereby preventing silicide formation over the floating gate, while allowing silicide formation over the logic devices. Silicide spiking and bridging are prevented in the NVM cell, as silicide-blocking dielectric structure prevents silicide metal from coming in contact with the floating gate or adjacent sidewall spacers. The silicide-blocking dielectric layer may expose portions of the active regions of the NVM cell, away from the floating gate and adjacent sidewall spacers, thereby enabling silicide formation on these portions. Alternately, the silicide-blocking dielectric layer may cover the active regions of the NVM cell during silicide formation. In this case, silicide-blocking dielectric layer may be thinned or removed after silicide formation.
    Type: Application
    Filed: January 26, 2006
    Publication date: July 26, 2007
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20070097743
    Abstract: A method, apparatus, and system in which an embedded memory fabricated in accordance with a conventional logic process includes one or more electrically-alterable non-volatile memory cells, each having a programming transistor, a read transistor and a control capacitor, which share a common floating gate electrode. The under-diffusion of the source/drain regions of the programming transistor and control capacitor are maximized. In one embodiment, the source/drain regions of the programming transistor are electrically shored by transistor punch-through (or direct contact).
    Type: Application
    Filed: October 28, 2005
    Publication date: May 3, 2007
    Applicant: Monolithic System Technology, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Publication number: 20060172504
    Abstract: An embedded memory system includes an array of dynamic random access memory (DRAM) cells, which are isolated with deep trench isolation, and logic transistors, which are isolated with shallow trench isolation. Each DRAM cell includes an access transistor and a capacitor structure. The capacitor structure is fabricated by forming a metal-dielectric-semiconductor (MOS) capacitor in a deep trench isolation region. A cavity is formed in the deep trench isolation, thereby exposing a sidewall region of the substrate. The sidewall region is doped, thereby forming one electrode of the cell capacitor. A gate dielectric layer is formed over the exposed sidewall, and a polysilicon layer is deposited over the resulting structure, thereby filling the cavity. The polysilicon layer is patterned to form the gate electrode of the access transistor and a capacitor electrode, which extends over the sidewall region and upper surface of the substrate.
    Type: Application
    Filed: February 3, 2005
    Publication date: August 3, 2006
    Applicant: Monolithic System Technology, Inc.
    Inventors: Dennis Sinitsky, Fu-Chieh Hsu
  • Publication number: 20050017285
    Abstract: A new method to form DRAM cells in an integrated circuit device is achieved. The method comprises providing a substrate. A plurality of STI regions is formed in the substrate. The STI regions comprise trenches in the substrate. The trenches are filled with a first dielectric layer. All of the first dielectric layer is etched away from a first group of the STI regions to form open trenches while leaving the first dielectric layer in a second group of the STI regions. A second dielectric layer is formed overlying the substrate and lining the open trenches. A conductive layer is deposited overlying the second dielectric layer and completely filling the open trenches. The conductive layer is patterned to define DRAM transistor gates and to define DRAM capacitor top plates. Thereafter, ions are implanted into the substrate to form source and drain regions for the transistors.
    Type: Application
    Filed: August 18, 2004
    Publication date: January 27, 2005
    Inventors: Kuo-Chyuan Tzeng, Ming-Hsiang Chiang, Wen-Chuan Chiang, Dennis Sinitsky
  • Patent number: 6686617
    Abstract: A process for fabrication of both compact memory and high performance logic on the same semiconductor chip. The process comprises forming a memory device in the memory region, forming a spacer nitride layer and a protective layer over both the memory region and the logic region, removing the protective layer over the logic region to expose the substrate, and forming the logic device in the logic region. Cobalt or titanium metal is applied over all horizontal surfaces in the logic region and annealed, forming a salicide where the metal rests over silicon or polysilicon regions, and any unreacted metal is removed. An uppermost nitride layer is then applied over both the memory and logic regions and is then covered with a filler in the logic region. Chip structures resulting from various embodiments of the process are also disclosed.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: February 3, 2004
    Assignee: International Business Machines Corporation
    Inventors: Paul D. Agnello, Bomy A. Chen, Scott W. Crowder, Ramachandra Divakaruni, Subramanian S. Iyer, Dennis Sinitsky
  • Publication number: 20010031535
    Abstract: A process for fabrication of both compact memory and high performance logic on the same semiconductor chip. The process comprises forming a memory device in the memory region, forming a spacer nitride layer and a protective layer over both the memory region and the logic region, removing the protective layer over the logic region to expose the substrate, and forming the logic device in the logic region. Cobalt or titanium metal is applied over all horizontal surfaces in the logic region and annealed, forming a salicide where the metal rests over silicon or polysilicon regions, and any unreacted metal is removed. An uppermost nitride layer is then applied over both the memory and logic regions and is then covered with a filler in the logic region. Chip structures resulting from various embodiments of the process are also disclosed.
    Type: Application
    Filed: June 11, 2001
    Publication date: October 18, 2001
    Inventors: Paul D. Agnello, Bomy A. Chen, Scott W. Crowder, Ramachandra Divakaruni, Subramanian S. Iyer, Dennis Sinitsky
  • Patent number: 6287913
    Abstract: A process for fabrication of both compact memory and high performance logic on the same semiconductor chip. The process comprises forming a memory device in the memory region, forming a spacer nitride layer and a protective layer over both the memory region and the logic region, removing the protective layer over the logic region to expose the substrate, and forming the logic device in the logic region. Cobalt or titanium metal is applied over all horizontal surfaces in the logic region and annealed, forming a salicide where the metal rests over silicon or polysilicon regions, and any unreacted metal is removed. An uppermost nitride layer is then applied over both the memory and logic regions and is then covered with a filler in the logic region. Chip structures resulting from various embodiments of the process are also disclosed.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: September 11, 2001
    Assignee: International Business Machines Corporation
    Inventors: Paul D. Agnello, Bomy A. Chen, Scott W. Crowder, Ramachandra Divakaruni, Subramanian S. Iyer, Dennis Sinitsky