Patents by Inventor Deqing Sun

Deqing Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200084427
    Abstract: Scene flow represents the three-dimensional (3D) structure and movement of objects in a video sequence in three dimensions from frame-to-frame and is used to track objects and estimate speeds for autonomous driving applications. Scene flow is recovered by a neural network system from a video sequence captured from at least two viewpoints (e.g., cameras), such as a left-eye and right-eye of a viewer. An encoder portion of the system extracts features from frames of the video sequence. The features are input to a first decoder to predict optical flow and a second decoder to predict disparity. The optical flow represents pixel movement in (x,y) and the disparity represents pixel movement in z (depth). When combined, the optical flow and disparity represent the scene flow.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 12, 2020
    Inventors: Deqing Sun, Varun Jampani, Erik Gundersen Learned-Miller, Huaizu Jiang
  • Publication number: 20190362502
    Abstract: A method, computer readable medium, and system are disclosed for estimating optical flow between two images. A first pyramidal set of features is generated for a first image and a partial cost volume for a level of the first pyramidal set of features is computed, by a neural network, using features at the level of the first pyramidal set of features and warped features extracted from a second image, where the partial cost volume is computed across a limited range of pixels that is less than a full resolution of the first image, in pixels, at the level. The neural network processes the features and the partial cost volume to produce a refined optical flow estimate for the first image and the second image.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
  • Publication number: 20190340728
    Abstract: A superpixel sampling network utilizes a neural network coupled to a differentiable simple linear iterative clustering component to determine pixel-superpixel associations from a set of pixel features output by the neural network. The superpixel sampling network computes updated superpixel centers and final pixel-superpixel associations over a number of iterations.
    Type: Application
    Filed: September 13, 2018
    Publication date: November 7, 2019
    Inventors: Varun Jampani, Deqing Sun, Ming-Yu Liu, Jan Kautz
  • Patent number: 10467763
    Abstract: A method, computer readable medium, and system are disclosed for estimating optical flow between two images. A first pyramidal set of features is generated for a first image and a partial cost volume for a level of the first pyramidal set of features is computed, by a neural network, using features at the level of the first pyramidal set of features and warped features extracted from a second image, where the partial cost volume is computed across a limited range of pixels that is less than a full resolution of the first image, in pixels, at the level. The neural network processes the features and the partial cost volume to produce a refined optical flow estimate for the first image and the second image.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: November 5, 2019
    Assignee: NVIDIA Corporation
    Inventors: Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
  • Patent number: 10424069
    Abstract: A method, computer readable medium, and system are disclosed for estimating optical flow between two images. A first pyramidal set of features is generated for a first image and a partial cost volume for a level of the first pyramidal set of features is computed, by a neural network, using features at the level of the first pyramidal set of features and warped features extracted from a second image, where the partial cost volume is computed across a limited range of pixels that is less than a full resolution of the first image, in pixels, at the level. The neural network processes the features and the partial cost volume to produce a refined optical flow estimate for the first image and the second image.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 24, 2019
    Assignee: NVIDIA Corporation
    Inventors: Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
  • Publication number: 20190158884
    Abstract: A method, computer readable medium, and system are disclosed for identifying residual video data. This data describes data that is lost during a compression of original video data. For example, the original video data may be compressed and then decompressed, and this result may be compared to the original video data to determine the residual video data. This residual video data is transformed into a smaller format by means of encoding, binarizing, and compressing, and is sent to a destination. At the destination, the residual video data is transformed back into its original format and is used during the decompression of the compressed original video data to improve a quality of the decompressed original video data.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 23, 2019
    Inventors: Yi-Hsuan Tsai, Ming-Yu Liu, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Publication number: 20190156154
    Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizonal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 23, 2019
    Inventors: Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Publication number: 20190147302
    Abstract: A method includes filtering a point cloud transformation of a 3D object to generate a 3D lattice and processing the 3D lattice through a series of bilateral convolution networks (BCL), each BCL in the series having a lower lattice feature scale than a preceding BCL in the series. The output of each BCL in the series is concatentated to generate an intermediate 3D lattice. Further filtering of the intermediate 3D lattice generates a first prediction of features of the 3D object.
    Type: Application
    Filed: May 22, 2018
    Publication date: May 16, 2019
    Inventors: Varun Jampani, Hang Su, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Publication number: 20190138889
    Abstract: Video interpolation is used to predict one or more intermediate frames at timesteps defined between two consecutive frames. A first neural network model approximates optical flow data defining motion between the two consecutive frames. A second neural network model refines the optical flow data and predicts visibility maps for each timestep. The two consecutive frames are warped according to the refined optical flow data for each timestep to produce pairs of warped frames for each timestep. The second neural network model then fuses the pair of warped frames based on the visibility maps to produce the intermediate frame for each timestep. Artifacts caused by motion boundaries and occlusions are reduced in the predicted intermediate frames.
    Type: Application
    Filed: October 24, 2018
    Publication date: May 9, 2019
    Inventors: Huaizu Jiang, Deqing Sun, Varun Jampani
  • Publication number: 20190057509
    Abstract: A neural network model receives color data for a sequence of images corresponding to a dynamic scene in three-dimensional (3D) space. Motion of objects in the image sequence results from a combination of a dynamic camera orientation and motion or a change in the shape of an object in the 3D space. The neural network model generates two components that are used to produce a 3D motion field representing the dynamic (non-rigid) part of the scene. The two components are information identifying dynamic and static portions of each image and the camera orientation. The dynamic portions of each image contain motion in the 3D space that is independent of the camera orientation. In other words, the motion in the 3D space (estimated 3D scene flow data) is separated from the motion of the camera.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 21, 2019
    Inventors: Zhaoyang Lv, Kihwan Kim, Deqing Sun, Alejandro Jose Troccoli, Jan Kautz
  • Publication number: 20180293737
    Abstract: A method, computer readable medium, and system are disclosed for estimating optical flow between two images. A first pyramidal set of features is generated for a first image and a partial cost volume for a level of the first pyramidal set of features is computed, by a neural network, using features at the level of the first pyramidal set of features and warped features extracted from a second image, where the partial cost volume is computed across a limited range of pixels that is less than a full resolution of the first image, in pixels, at the level. The neural network processes the features and the partial cost volume to produce a refined optical flow estimate for the first image and the second image.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 11, 2018
    Inventors: Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz