Patents by Inventor Derek Hsen Dai Hsu

Derek Hsen Dai Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11015237
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: May 25, 2021
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu
  • Publication number: 20200181743
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Application
    Filed: February 6, 2020
    Publication date: June 11, 2020
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu
  • Patent number: 10590517
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: March 17, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu
  • Patent number: 9982330
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hathium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: May 29, 2018
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu
  • Publication number: 20180094344
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 5, 2018
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu
  • Publication number: 20160258043
    Abstract: Disclosed herein is a shape memory alloy comprising 48 to 50 atomic percent nickel, 15 to 30 atomic percent hathium, 1 to 5 atomic percent aluminum; with the remainder being titanium. Disclosed herein too is a method of manufacturing a shape memory alloy comprising mixing together to form an alloy nickel, hafnium, aluminum and titanium in amounts of 48 to 50 atomic percent nickel, 15 to 30 atomic percent hafnium, 1 to 5 atomic percent aluminum; with the remainder being titanium; solution treating the alloy at a temperature of 700 to 1300° C. for 50 to 200 hours; and aging the alloy at a temperature of 400 to 800° C. for a time period of 50 to 200 hours to form a shape memory alloy.
    Type: Application
    Filed: November 25, 2014
    Publication date: September 8, 2016
    Inventors: Michele Viola Manuel, Derek Hsen Dai Hsu