Patents by Inventor Derek L. Stemple

Derek L. Stemple has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11667941
    Abstract: Disclosed are compositions and methods for template-free nucleic acid synthesis.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: June 6, 2023
    Assignee: CAMENA BIOSCIENCE LIMITED
    Inventors: Derek L. Stemple, Andrew G. Fraser, Sylwia Mankowska, Neil Bell
  • Publication number: 20220145346
    Abstract: Disclosed are compositions and methods for template-free nucleic acid synthesis using N-mers and/or anchor primers that comprise at least one XNA or a combination of RNA and DNA.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 12, 2022
    Inventors: Derek L. STEMPLE, Andrew G. FRASER, Sylwia MANKOWSKA, Neil BELL
  • Publication number: 20210180119
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 17, 2021
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20210087600
    Abstract: Disclosed are compositions and methods for template-free nucleic acid synthesis.
    Type: Application
    Filed: January 14, 2019
    Publication date: March 25, 2021
    Inventors: Derek L. STEMPLE, Andrew G. FRASER, Sylwia MANKOWSKA, Neil BELL
  • Patent number: 10947584
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: March 16, 2021
    Assignee: ABBOTT DIAGNOSTICS SCARBOROUGH, INC.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20190360030
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Application
    Filed: June 14, 2019
    Publication date: November 28, 2019
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Patent number: 10329603
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: June 25, 2019
    Assignee: ALERE SAN DIEGO INC.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Patent number: 10329602
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes. Further, the improved processivity of the disclosed methods may allow amplification of DNA up to hundres of megabases in length.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: June 25, 2019
    Assignee: Alere San Diego, Inc.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Patent number: 10036057
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: July 31, 2018
    Assignee: ALERE SAN DIEGO, INC.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20170342473
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes. Further, the improved processivity of the disclosed methods may allow amplification of DNA up to hundres of megabases in length.
    Type: Application
    Filed: December 30, 2016
    Publication date: November 30, 2017
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20170321262
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Application
    Filed: April 25, 2017
    Publication date: November 9, 2017
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Patent number: 9663820
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: May 30, 2017
    Assignee: Alere San Diego Inc.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20170044598
    Abstract: This disclosure describe three related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of the bacterial RecA and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods has the advantage of not requiring thermocycling or thermophilic enzymes. Further, the improved processivity of the disclosed methods allow amplification of DNA up to hundreds of megabases in length.
    Type: Application
    Filed: April 15, 2016
    Publication date: February 16, 2017
    Inventors: Niall A. Armes, Derek L. Stemple
  • Publication number: 20160281152
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Application
    Filed: January 6, 2016
    Publication date: September 29, 2016
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Patent number: 9340825
    Abstract: This disclosure describe three related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of the bacterial RecA and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods has the advantage of not requiring thermocycling or thermophilic enzymes. Further, the improved processivity of the disclosed methods allow amplification of DNA up to hundreds of megabases in length.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: May 17, 2016
    Assignee: Alere San Diego, Inc.
    Inventors: Niall A. Armes, Derek L. Stemple
  • Patent number: 9309502
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: April 12, 2016
    Assignee: Alere San Diego Inc.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20160083780
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Application
    Filed: September 25, 2015
    Publication date: March 24, 2016
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20160032374
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes. Further, the improved processivity of the disclosed methods may allow amplification of DNA up to hundreds of megabases in length.
    Type: Application
    Filed: February 19, 2015
    Publication date: February 4, 2016
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Publication number: 20150284695
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes, thus offering easy and affordable implementation and portability relative to other amplification methods. Further disclosed are conditions to enable real-time monitoring of RPA reactions, methods to regulate RPA reactions using light and otherwise, methods to determine the nature of amplified species without a need for gel electrophoresis, methods to improve and optimize signal to noise ratios in RPA reactions, methods to optimize oligonucleotide primer function, methods to control carry-over contamination, and methods to employ sequence-specific third ‘specificity’ probes.
    Type: Application
    Filed: January 30, 2015
    Publication date: October 8, 2015
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple
  • Patent number: 8962255
    Abstract: This disclosure describes related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes. Further, the improved processivity of the disclosed methods may allow amplification of DNA up to hundreds of megabases in length.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: February 24, 2015
    Assignee: Alere San Diego, Inc.
    Inventors: Olaf Piepenburg, Colin H. Williams, Niall A. Armes, Derek L. Stemple