Patents by Inventor Detlef Otte

Detlef Otte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604406
    Abstract: A magnet core has a linear B-H loop, a high modulability with alternating current and direct current, a relative permeability of more than 500 but less than 15,000, and a saturation magnetostriction ?s of less than 15 ppm, and is made of a ferromagnetic alloy, at least 50 percent of which consist of fine crystalline parts having an average particle size of 100 nm or less (nanocrystalline alloy) and which is characterized by formula FeaCobNicCudMeSifBgXh, wherein M represents at least one of the elements V, Nb, Ta, Ti, Mo, W, Zr, Cr, Mn, and Hf, a, b, c, d, e, f, g are indicated in atomic percent, X represents the elements P, Ge, C and commercially available impurities, and a, b, c, d, e, f, g, h satisfy the following conditions: 0<=b<=40; 2<c<20; 0.5<=d<=2; 1<=e<=6; 6.5<=f<=18; 5<=g<=14; h<5 atomic percent; 5<=b+c<=45, and a+b+c+d+e+f+g+h=100.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: March 31, 2020
    Assignee: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Giselher Herzer, Detlef Otte
  • Publication number: 20190322525
    Abstract: A magnet core has a linear B-H loop, a high modulability with alternating current and direct current, a relative permeability of more than 500 but less than 15,000, and a saturation magnetostriction lambdas of less than 15 ppm, and is made of a ferromagnetic alloy, at least 50 percent of which consist of fine crystalline parts having an average particle size of 100 nm or less (nanocrystalline alloy) and which is characterized by formula FeaCobNicCudMeSifBgXh, wherein M represents at least one of the elements V, Nb, Ta, Ti, Mo, W, Zr, Cr, Mn, and Hf, a, b, c, d, e, f, g are indicated in atomic percent, X represents the elements P, Ge, C and commercially available impurities, and a, b, c, d, e, f, g, h satisfy the following conditions: 0<=b<=40; 2<c<20; 0.5<=d<=2; 1<=e<=6; 6.5<=f<=18; 5<=g<=14; h<5 atomic percent; 5<=b+c<=45, and a+b+c+d+e+f=100.
    Type: Application
    Filed: May 6, 2019
    Publication date: October 24, 2019
    Inventors: Giselher HERZER, Detlef OTTE
  • Publication number: 20150255203
    Abstract: Magnet core comprising a nanocrystalline alloy based on iron which has a permeability ? of between 1000 and 3500 and a magnetostriction of less than 1 ppm, which magnet core has a core mass of less than 4.7 g in the case of a maximum tolerance to unipolar current amplitudes of 60 A or a core mass of less than 5.3 g in the case of a maximum tolerance to unipolar current amplitudes of 100 A.
    Type: Application
    Filed: October 9, 2013
    Publication date: September 10, 2015
    Applicant: VACUUMSCHMELZE GMBH & CO. KG
    Inventors: Giselher Herzer, Christian Polak, Detlef Otte, Gabriela Saage
  • Patent number: 7861403
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of =|4| ppm, a circular hysteresis loop with 0.50=Br/Bs=0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 4, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Publication number: 20080092366
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of=|4| ppm, a circular hysteresis loop with 0.50=Br/Bs=0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Application
    Filed: October 23, 2007
    Publication date: April 24, 2008
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Patent number: 7358844
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of =|4| ppm, a circular hysteresis loop with 0.50=Br/Bs=0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: April 15, 2008
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Publication number: 20070126546
    Abstract: A current transformer core has a ratio of the core outside diameter Da to the core inside diameter Di of <1.5, a saturation magnetostriction ?s of=|4| ppm, a circular hysteresis loop with 0.50=Br/Bs 0.85 and an Hcmax=20 mA/cm. The current transformer core is made of a soft magnetic iron alloy in which at least 50% of the alloy structure is occupied by fine-crystalline particles with an average particle size of 100 nm or less, and the iron-based alloy comprises, in essence, one combination.
    Type: Application
    Filed: November 17, 2006
    Publication date: June 7, 2007
    Inventors: Wulf Guenther, Detlef Otte, Joerg Petzold
  • Publication number: 20060077030
    Abstract: A magnet core has a linear B-H loop, a high modulability with alternating current and direct current, a relative permeability of more than 500 but less than 15,000, and a saturation magnetostriction lambdas of less than 15 ppm, and is made of a ferromagnetic alloy, at least 50 percent of which consist of fine crystalline parts having an average particle size of 100 nm or less (nanocrystalline alloy) and which is characterized by formula FeaCobNicCudMeSifBgXh, wherein M represents at least one of the elements V, Nb, Ta, Ti, Mo, W, Zr, Cr, Mn, and Hf, a, b, c, d, e, f, g are indicated in atomic percent, X represents the elements P, Ge, C and commercially available impurities, and a, b, c, d, e, f, g, h satisfy the following conditions: 0<=b<=40; 2<c<20; 0.5<=d<=2; 1<=e<=6; 6.5<=f<=18; 5<=g<=14; h<5 atomic percent; 5<=b+c<=45, and a+b+c+d+e+f=100.
    Type: Application
    Filed: September 27, 2005
    Publication date: April 13, 2006
    Inventors: Giselher Herzer, Detlef Otte
  • Patent number: 6580347
    Abstract: Magnetic cores including coiled amorphous ferromagnetic alloy strips are addressed. The composition of the alloy essentially corresponds to the formula Coa(Fe1−xMnx)bNicXdSicBfCg, where X is at least one of the elements V, Nb, Ta, Cr, Mo, W, Ge, and P; and a, b, c, d, e, f, and g are indicated in atom percent and meet the following conditions: 40≦a≦82; 3≦b≦10, 0≦c≦30; 0≦d≦5; 0≦e≦20; 7≦f≦26; 0≦g≦3; with 15≦d+e+f+g≦33 and 0≦x≦1.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: June 17, 2003
    Assignee: Vacuumschmelze GmbH
    Inventors: Detlef Otte, Jörg Petzold
  • Patent number: 6563411
    Abstract: A current transformer for alternating current with direct current components is proposed, consisting of at least one transformer core with a primary winding and at least one secondary winding to which a burden resistor is connected in parallel and terminates a secondary circuit with low resistance. The transformer core comprises a closed ring core with no air gap produced from a strip made of an amorphous ferromagnetic alloy that is practically free from magnetostriction and has permeability &mgr;<1400. Particularly appropriate alloys for such a strip ring core have been shown to be cobalt-based alloys consisting essentially of the formula Coa(Fe1-xMnx)bNicXdSieBfCg. where X is at least one of the elements V, Nb, Ta, Cr, Mo, W, Ge and P, a-g are given in atomic % and whereby a, b, c, d, e, f, g and x satisfy the following conditions: 40≦a≦82; 2≦b≦10; 0≦c≦30; 0≦d≦5; 0≦e≦15; 7≦f≦26; 0≦g≦3; with 15≦d+e+f+g≦30 and 0≦x<1.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 13, 2003
    Assignee: Vacuumschmelze GmbH
    Inventors: Detlef Otte, Joerg Petzold
  • Patent number: 6507262
    Abstract: Magnetic cores including coiled amorphous ferromagnetic alloy strips in which at least fifty percent of the volume contains fine crystalline particles with an average particle size of 100 nm or less are addressed. The composition of the alloy essentially corresponds to the formula FeaCobCucSidBeMf, where M is at least one of the elements V, Nb, Ta, Ti, Mo, W, Zr, and Hf; and a, b, c, d, e, and f are indicated in atom percent and meet the following conditions: 0.5≦c≦2; 6.5≦d≦18; 5≦e≦14; 1≦f≦6; with d+e>18 and 0≦b≦15, and a+b+c+d+e+f=100.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: January 14, 2003
    Assignee: Vacuumschmelze GmbH
    Inventors: Detlef Otte, Jörg Petzold