Patents by Inventor Detlef Schweng

Detlef Schweng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9160935
    Abstract: A digital color imager providing an extended luminance range, an improved color implementation and enabling a method for an easy transformation into another color space having luminance as a component has been achieved. Key of the invention is the addition of white pixels to red, green and blue pixels. These white pixels have either an extended dynamic range as described by (U.S. Pat. No. 6,441,852 to Levine et al.) or have a larger size than the red, green, or blue pixels used. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values and have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: October 13, 2015
    Assignee: Youliza, Gehts B.V. Limited Liability Company
    Inventors: Detlef Schweng, Taner Dosluoglu, Horst Knoedgen
  • Publication number: 20140184862
    Abstract: A digital color imager providing an extended luminance range, an improved color implementation and enabling a method for an easy transformation into another color space having luminance as a component has been achieved. Key of the invention is the addition of white pixels to red, green and blue pixels. These white pixels have either an extended dynamic rang as described by (U.S. Pat. No. 6,441,852 to Levine et al.) or have a larger size than the red, green, or blue pixels used. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values and have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: Youliza, Gehts B.V. Limited Liability Company
    Inventors: Detlef SCHWENG, Taner DOSLUOGLU, Horst KNOEDGEN
  • Patent number: 8723995
    Abstract: A digital color imager providing an extended luminance range, an improved color implementation and enabling a method for an easy transformation into another color space having luminance as a component has been achieved. Key of the invention is the addition of white pixels to red, green and blue pixels. These white pixels have either an extended dynamic rang as described by U.S. patent (U.S. Pat. No. 6,441,852 to Levine et al.) or have a larger size than the red, green, or blue pixels used. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values and have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: May 13, 2014
    Assignee: Youliza, Gehts B.V. Limited Liability Company
    Inventors: Detlef Schweng, Taner Dosluoglu, Horst Knoedgen
  • Patent number: 7812870
    Abstract: Systems and related methods have been achieved to convert in an analog domain the output of color image sensors into another color space. A chosen implementation converts the output of red, green, blue and white image sensors to the YcrCb color space, wherein the white image sensors are either extended dynamic range (XDR) image sensors or are of the same type as the other image sensors but have a larger size. The output of the white pixels can be used without conversion directly for the luminance Y value, thus achieving a very simple method for a conversion to YCbCr color space. Analog amplifiers, assigned to each of the red, green, and blue image sensors, have a gain according to the matrix describing the conversion from RGB to CbCr. Analog adders, assigned to Cb and Cr are adding the coefficients required for the computation of Cb and Cr. Finally the values of Y, Cb and Cr are converted to digital values. White pixels are advantageous but not required using the present invention.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: October 12, 2010
    Assignee: Digital Imaging Systems GmbH
    Inventors: Hubert Utz, Detlef Schweng
  • Publication number: 20100027015
    Abstract: The invention relates to an optical device with at least one radiation source (11), a detector (16), a light guide (12) for the primary radiation and a light guide (17) for further conducting the radiation to be detected to detector (16), wherein the light guide (12) for the primary radiation and the light guide (17) for further conducting the radiation to be detected are each designed in such a way that the radiation emitted at the end (13) of the primary light guide (12) on the sample side, after passage through the sample under investigation, falls directly on the end (18) of the light guide (17) on the sample side for further conducting the radiation to be detected.
    Type: Application
    Filed: July 21, 2009
    Publication date: February 4, 2010
    Inventors: Detlef Schweng, Juerg Stahl
  • Patent number: 7567732
    Abstract: Methods to convert the resolution of digital images have been achieved. The methods invented support the decrease or the increase of the resolution of digital images, even enlargement in one direction and decimation in the other direction. The methods invented are applicable for any color space used. In case of decimation the method invented combines an interpolation of source pixels to calculate the color values of the destination pixels and omitting some rows of source pixels. A linear interpolation method is used to get a fast result of the interpolation. In case of an enlargement of a digital image in one or two directions the method invented combines the calculation of the color values of the destination pixels by an interpolation of the nearest source pixels with an extrapolation of the destination pixels being close to the edge of the image according to the scale of the conversion of resolution in one or two directions.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: July 28, 2009
    Assignee: Digital Imaging Systems GmbH
    Inventor: Detlef Schweng
  • Patent number: 7529427
    Abstract: Methods to zoom a region of interest from a digital image have been achieved. The methods invented support according to the scale of zooming the decrease or the increase of the resolution of digital images. The region of interest to be zoomed is variable; the destination image has a fixed size. In case of a decrease of the resolution of the region of interest the method invented combines interpolating source pixels to calculate the color values of the destination pixels and omitting some rows of source pixels. In case of enlargement the method invented combines interpolation of the source pixels to calculate the color values of the destination pixels, extrapolation of the destination pixels being close to the edge of the image, and replication of some of the interpolated rows of the destination image to gain additional rows according to the scale of the increase of resolution (enlargement) of a digital image.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: May 5, 2009
    Assignee: Digital Imaging Systems GmbH
    Inventor: Detlef Schweng
  • Patent number: 7499855
    Abstract: An apparatus, a circuit and a method are given, to realize very effective noise suppression for speech signals. Using thereby novel calculation methods allow for a real-time operation without any remarkable delay. Also a significant reduction of the overall processing power demands in conjunction with reduced memory requirements is achieved. Using the intrinsic advantages of that solution the circuit of the invention is manufactured with standard CMOS technology and/or standard Digital Signal Processors at low cost.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: March 3, 2009
    Assignee: Dialog Semiconductor GmbH
    Inventor: Detlef Schweng
  • Patent number: 7486298
    Abstract: A method to convert line-based pixel data from an imager, e.g. a video camera into block-based pixel data with a minimum of buffer memory size has been achieved. Key of the invention is that as soon pixel data are read-out of a buffer memory, pixel data of the next image are written to the same position of the buffer memory as the pixels, which have been just read-out have been located. While in prior art the buffer memory required a capacity to store two images is, using the method invented, only a capacity to store one image required. A method to convert line-based pixel data for an image application reading-out column-wise has been illustrated in detail. This general method can be used for a multitude of image transformations and image compression methods e.g. for compression of pixel data as JPEG, for mirroring, tilting, rotating etc. of line-based pixel data.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: February 3, 2009
    Assignee: Digital Imaging Systems GmbH
    Inventor: Detlef Schweng
  • Patent number: 7453502
    Abstract: A method used for the compensation of vignetting in digital cameras has been achieved. The compensation for vignetting is performed by multiplying pixel output of the sensor array with a correction factor. In a preferred embodiment of the invention all pixels are multiplied with an adequate correction factor. Alternatively pixels, being close to the center of the sensor array, can be left unchanged. Said correction factor can be calculated in a very fast and efficient way by using two constant factors describing the specific geometry of the lens/sensor array system and by multiplying a first of said factors with the square of the distance between a pixel and the center of the sensor array and by multiplying a second of said factors with the distance between a pixel and the center of the sensor array to the power of four. The result of the second multiplication is subtracted from the result of the first multiplication and this result is added to one to get the final correction factor.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: November 18, 2008
    Assignee: Digital Imaging Systems GmbH
    Inventor: Detlef Schweng
  • Patent number: 7414630
    Abstract: A digital color imager providing an extended luminance range, enabling a method for an easy transformation into all other color spaces having luminance as a component. White pixels are added to hexagonal red, green and blue pixels. These white pixels can alternatively have an extended dynamic range as described by U.S. Pat. No. 6,441,852 (to Levine et al.). Especially the white pixels may have a larger size than the red, green, or blue pixels used. This larger size can be implemented by concatenation of “normal” size hexagonal white pixels. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: August 19, 2008
    Assignee: Digital Imaging Systems GmbH
    Inventors: Detlef Schweng, Stefan Spaeth
  • Patent number: 7400332
    Abstract: A digital color imager provides an extended luminance range, enabling a method for an easy transformation into all other color spaces having luminance as a component. White pixels are added to hexagonal red, green and blue pixels. These white pixels can alternatively have an extended dynamic range as described by U.S. Pat. No. (6,441,852 to Levine et al.). Especially the white pixels may have a larger size than the red, green, or blue pixels used. This larger size can be implemented by concatenation of “normal” size hexagonal white pixels. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: July 15, 2008
    Assignee: Oigital Imaging Systems GmbH
    Inventors: Detlef Schweng, Stefan Spaeth
  • Publication number: 20060161430
    Abstract: A circuit and a method are given, to realize a very flexible voice activation system using a modular building block approach, that is adaptively tailored to handle certain relevant and case specific operational characteristics describing most of the possible acoustical differing environmental cases to be found in the field of speech recognition. Included are determinations of “Noise estimation and “Speech estimation” values, done effectively without use of Fast Fourier Transform (FFT) methods or zero crossing algorithms only by analyzing the modulation properties of human voice. Said circuit and method are designed in order to be implemented with a very economic number of components, capable to be realized with modern integrated circuit technologies.
    Type: Application
    Filed: July 19, 2005
    Publication date: July 20, 2006
    Inventor: Detlef Schweng
  • Publication number: 20060146064
    Abstract: A digital color imager providing an extended luminance range, an improved color implementation and enabling a method for an easy transformation into another color space having luminance as a component has been achieved. Key of the invention is the addition of white pixels to red, green and blue pixels. These white pixels have either an extended dynamic rang as described by U.S. Pat. No. 6,441,852 (to Levine et al.) or have a larger size than the red, green, or blue pixels used. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values and have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 6, 2006
    Inventors: Detlef Schweng, Stefan Spaeth
  • Publication number: 20060146067
    Abstract: A digital color imager provides an extended luminance range, enabling a method for an easy transformation into all other color spaces having luminance as a component. White pixels are added to hexagonal red, green and blue pixels. These white pixels can alternatively have an extended dynamic range as described by U.S. Pat. No. (6,441,852 to Levine et al.). Especially the white pixels may have a larger size than the red, green, or blue pixels used. This larger size can be implemented by concatenation of “normal” size hexagonal white pixels. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Application
    Filed: January 10, 2005
    Publication date: July 6, 2006
    Inventors: Detlef Schweng, Stefan Spaeth
  • Publication number: 20060104543
    Abstract: A method to convert line-based pixel data from an imager, e.g. a video camera into block-based pixel data with a minimum of buffer memory size has been achieved. Key of the invention is that as soon pixel data are read-out of a buffer memory, pixel data of the next image are written to the same position of the buffer memory as the pixels, which have been just read-out have been located. While in prior art the buffer memory required a capacity to store two images is, using the method invented, only a capacity to store one image required. A method to convert line-based pixel data for an image application reading-out column-wise has been illustrated in detail. This general method can be used for a multitude of image transformations and image compression methods e.g. for compression of pixel data as JPEG, for mirroring, tilting, rotating etc. of line-based pixel data.
    Type: Application
    Filed: November 16, 2004
    Publication date: May 18, 2006
    Inventor: Detlef Schweng
  • Publication number: 20050285955
    Abstract: Systems and related methods have been achieved to convert in an analog domain the output of color image sensors into another color space. A chosen implementation converts the output of red, green, blue and white image sensors to the YcrCb color space, wherein the white image sensors are either extended dynamic range (XDR) image sensors or are of the same type as the other image sensors but have a larger size. The output of the white pixels can be used without conversion directly for the luminance Y value, thus achieving a very simple method for a conversion to YCbCr color space. Analog amplifiers, assigned to each of the red, green, and blue image sensors, have a gain according to the matrix describing the conversion from RGB to CbCr. Analog adders, assigned to Cb and Cr are adding the coefficients required for the computation of Cb and Cr. Finally the values of Y, Cb and Cr are converted to digital values. White pixels are advantageous but not required using the present invention.
    Type: Application
    Filed: June 22, 2004
    Publication date: December 29, 2005
    Inventors: Hubert Utz, Detlef Schweng
  • Publication number: 20050248671
    Abstract: In large arrays of image sensing devices, like CCDs, a small number of defective image elements (pixels) must be tolerated and the resulting image degradation should be eliminated through bad pixel correction. The disclosed invention provides a mechanism to effectively detect defective pixels “on the fly” in a Bayer RGB type color image sensor, optimized for low cost applications. It calculates a variable threshold based on signal changes on nearby pixels of the same color within a single row and checks if the signal change of the pixel under test exceeds said variable threshold. It further performs a plausibility check using nearby pixels of an other color in the same row.
    Type: Application
    Filed: June 3, 2004
    Publication date: November 10, 2005
    Inventor: Detlef Schweng
  • Publication number: 20050248667
    Abstract: A digital color imager providing an extended luminance range, an improved color implementation and enabling a method for an easy transformation into another color space having luminance as a component has been achieved. Key of the invention is the addition of white pixels to red, green and blue pixels. These white pixels have either an extended dynamic rang as described by U.S. patent (U.S. Pat. No. 6,441,852 to Levine et al.) or have a larger size than the red, green, or blue pixels used. The output of said white pixels can be directly used for the luminance values Y of the destination color space. Therefore only the color values and have to be calculated from the RGB values, leading to an easier and faster calculation. As an example chosen by the inventor the conversion to YCbCr color space has been shown in detail.
    Type: Application
    Filed: June 3, 2004
    Publication date: November 10, 2005
    Inventors: Detlef Schweng, Taner Dosluoglu, Horst Knoedgen
  • Patent number: RE44983
    Abstract: Methods to zoom a region of interest from a digital image have been achieved. The methods invented support according to the scale of zooming the decrease or the increase of the resolution of digital images. The region of interest to be zoomed is variable; the destination image has a fixed size. In case of a decrease of the resolution of the region of interest the method invented combines interpolating source pixels to calculate the color values of the destination pixels and omitting some rows of source pixels. In case of enlargement the method invented combines interpolation of the source pixels to calculate the color values of the destination pixels, extrapolation of the destination pixels being close to the edge of the image, and replication of some of the interpolated rows of the destination image to gain additional rows according to the scale of the increase of resolution (enlargement) of a digital image.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: July 1, 2014
    Assignee: Youliza, Gehts B.V. Limited Liability Company
    Inventor: Detlef Schweng