Patents by Inventor Dhiraj Goel

Dhiraj Goel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9442488
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: September 13, 2016
    Assignee: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Dhiraj Goel, Frederic D. Hook, Mario E. Munich
  • Patent number: 9427875
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: August 30, 2016
    Assignee: iRobot Corporation
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Publication number: 20160147230
    Abstract: The present invention provides a mobile robot configured to navigate an operating environment, that includes a controller circuit that directs a drive of the mobile robot to navigate the mobile robot through an environment using camera-based navigation system and a camera including optics defining a camera field of view and a camera optical axis, where the camera is positioned within the recessed structure and is tilted so that the camera optical axis is aligned at an acute angle of above a horizontal plane in line with the top surface and is aimed in a forward drive direction of the robot body, and the camera is configured to capture images of the operating environment of the mobile robot.
    Type: Application
    Filed: September 16, 2015
    Publication date: May 26, 2016
    Inventors: Mario Munich, Nikolai Romanov, Dhiraj Goel, Phillip Fong
  • Publication number: 20160101523
    Abstract: A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge—following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 14, 2016
    Inventors: Michael S. Stout, Gabriel Francis Brisson, Enrico Di Bernardo, Paolo Pirjanian, Dhiraj Goel, James Philip Case, Michael Dooley
  • Publication number: 20160075032
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Patent number: 9250081
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 2, 2016
    Assignee: iRobot Corporation
    Inventors: Jens-Steffen Gutmann, Dhiraj Goel, Mario E. Munich
  • Patent number: 9223312
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: December 29, 2015
    Assignee: iRobot Corporation
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Patent number: 9188983
    Abstract: A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: November 17, 2015
    Assignee: iROBOT CORPORATION
    Inventors: Michael S. Stout, Gabriel Francis Brisson, Enrico Di Bernardo, Paolo Pirjanian, Dhiraj Goel, James Philip Case, Michael Dooley
  • Publication number: 20150158174
    Abstract: A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 11, 2015
    Inventors: Nikolai Romanov, Collin Eugene Johnson, James Philip Case, Dhiraj Goel, Steffen Gutmann, Michael Dooley
  • Patent number: 9026302
    Abstract: A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: May 5, 2015
    Assignee: iRobot Corporation
    Inventors: Michael S. Stout, Gabriel Francis Brisson, Enrico Di Bernardo, Paolo Pirjanian, Dhiraj Goel, James Philip Case, Michael Dooley
  • Patent number: 8961695
    Abstract: A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: February 24, 2015
    Assignee: iRobot Corporation
    Inventors: Nikolai Romanov, Collin Eugene Johnson, James Philip Case, Dhiraj Goel, Steffen Gutmann, Michael Dooley
  • Patent number: 8862271
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: October 14, 2014
    Assignee: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Frederick D. Hook, Mario E. Munich, Dhiraj Goel
  • Publication number: 20140257622
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 11, 2014
    Applicant: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Dhiraj Goel, Frederic D. Hook, Mario E. Munich
  • Publication number: 20140222279
    Abstract: A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: iRobot Corporation
    Inventors: Michael S. Stout, Gabriel Francis Brisson, Enrico Di Bernardo, Paolo Pirjanian, Dhiraj Goel, James Philip Case, Michael Dooley
  • Publication number: 20140031980
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Application
    Filed: November 9, 2012
    Publication date: January 30, 2014
    Inventors: Jens-Steffen Gutmann, Dhiraj Goel, Mario E. Munich
  • Publication number: 20130331988
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Publication number: 20130138246
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 30, 2013
    Inventors: Jens-Steffen Gutmann, Dhiraj Goel, Mario E. Munich
  • Publication number: 20110202175
    Abstract: A robotic cleaner includes a cleaning assembly for cleaning a surface and a main robot body. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and a width of the cleaning assembly is greater than a width of the main robot body. A robotic cleaning system includes a main robot body and a plurality of cleaning assemblies for cleaning a surface. The main robot body houses a drive system to cause movement of the robotic cleaner and a microcontroller to control the movement of the robotic cleaner. The cleaning assembly is located in front of the drive system and each of the cleaning assemblies is detachable from the main robot body and each of the cleaning assemblies has a unique cleaning function.
    Type: Application
    Filed: December 30, 2010
    Publication date: August 18, 2011
    Inventors: Nikolai Romanov, Collin Eugene Johnson, James Philip Case, Dhiraj Goel, Steffen Gutmann, Michael Dooley
  • Publication number: 20110167574
    Abstract: A robot configured to navigate a surface, the robot comprising a movement mechanism; a logical map representing data about the surface and associating locations with one or more properties observed during navigation; an initialization module configured to establish an initial pose comprising an initial location and an initial orientation; a region covering module configured to cause the robot to move so as to cover a region; an edge-following module configured to cause the robot to follow unfollowed edges; a control module configured to invoke region covering on a first region defined at least in part based at least part of the initial pose, to invoke region covering on least one additional region, to invoke edge-following, and to invoke region covering cause the mapping module to mark followed edges as followed, and cause a third region covering on regions discovered during edge-following.
    Type: Application
    Filed: November 5, 2010
    Publication date: July 14, 2011
    Applicant: EVOLUTION ROBOTICS, INC.
    Inventors: MICHAEL S. STOUT, Gabriel Francis Brisson, Enrico Di Bernardo, Paolo Pirjanian, Dhiraj Goel, James Philip Case, Michael Dooley