Patents by Inventor Diefeng Gu

Diefeng Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9999858
    Abstract: Methods for making multiple walled nested coaxial nanostructures and devices incorporating the coaxial nanostructures are disclosed. The coaxial nanostructures include an inner nanostructure, a first outer nanotube disposed around the inner nanostructure, and a first annular channel between the inner nanostructure and the first outer nanotube. The coaxial nanostructures have extremely high aspect ratios, ranging from about 5 to about 1,200, or about 300 to about 1200.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: June 19, 2018
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Helmut Baumgart, Gon Namkoong, Diefeng Gu, Tarek Abdel-Fattah
  • Publication number: 20150136733
    Abstract: Multiple walled nested coaxial nanostructures, methods for making multiple walled nested coaxial nanostructures, and devices incorporating the coaxial nanostructures are disclosed. The coaxial nanostructures include an inner nanostructure, a first outer nanotube disposed around the inner nanostructure, and a first annular channel between the inner nanostructure and the first outer nanotube. The coaxial nanostructures have extremely high aspect ratios, ranging from about 5 to about 1,200, or about 300 to about 1200.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventors: Helmut BAUMGART, Gon NAMKOONG, Diefeng GU, Tarek ABDEL-FATTAH
  • Patent number: 8404273
    Abstract: A variety of article and systems including wound care systems, methods for making the wound care systems, bactericidal, and methods for treating wounds using these systems are disclosed. The wound care systems may include a first material comprising one or more fibers or porous media. The one or more fibers or porous media may be coated with a second material that is capable of inhibiting the growth of bacteria and killing the bacteria to render the wound care system sterile, increasing the absorbency of the first material, or both upon exposure to light. The first material may be cotton, or any suitable fibrous material, the second material may be TiO2, and the light may be UV or visible light. A variety of methods including ALD may be used to coat the first material.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: March 26, 2013
    Assignee: Old Dominion University Research Foundation
    Inventors: Helmut Baumgart, Diefeng Gu
  • Publication number: 20120237762
    Abstract: A device construct for lighting and display applications is fabricated from a substrate, a deposited phosphor layer over the substrate, and a layer of thermal and electrically-conductive luminescent material over the deposited layer. The layer of thermal and electrically-conductive luminescent material is a thin film that conforms to the morphology of the phosphor layer. The device is fabricated by providing a substrate, depositing a thin layer of phosphor powder on the substrate by any technique, and coating the phosphor layer with a layer of thermal and electrically-conductive luminescent material by atomic layer deposition.
    Type: Application
    Filed: March 17, 2012
    Publication date: September 20, 2012
    Applicants: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Charles E. Hunt, Helmut Baumgart, Diefeng Gu
  • Publication number: 20120080313
    Abstract: Electroosmotic (EO) devices are provided which are not subject to mechanical wear and tear and with no moving parts, and having improved flow rates and electrical properties. Atomic layer deposition can be used to prepare three electrical terminal active zeta potential modulated EO devices from porous membranes. First, second, and further thin layers of materials can be formed with the pores. Thus, embedded electrodes can be formed along the length of the pores. The zeta potential in the pores can be modified by use of a voltage potential applied the embedded electrode, thereby achieving active control of surface zeta potential within the pores and active control of flow through the pores.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 5, 2012
    Applicant: Old Dominion University Research Foundation
    Inventors: Helmut BAUMGART, Diefeng Gu, Tarek Abdel-Fattah, Ali Beskok, Seungkyung Park
  • Publication number: 20120034410
    Abstract: Multiple walled nested coaxial nanostructures, methods for making multiple walled nested coaxial nanostructures, and devices incorporating the coaxial nanostructures are disclosed. The coaxial nanostructures include an inner nanostructure, a first outer nanotube disposed around the inner nanostructure, and a first annular channel between the inner nanostructure and the first outer nanotube. The coaxial nanostructures have extremely high aspect ratios, ranging from about 5 to about 1,200, or about 300 to about 1200.
    Type: Application
    Filed: April 23, 2010
    Publication date: February 9, 2012
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Helmut Baumgart, Gon Namkoong, Diefeng Gu, Tarek Abdel-Fattah
  • Publication number: 20100274176
    Abstract: A variety of article and systems including wound care systems, methods for making the wound care systems, bactericidal, and methods for treating wounds using these systems are disclosed. The wound care systems may include a first material comprising one or more fibers or porous media. The one or more fibers or porous media may be coated with a second material that is capable of inhibiting the growth of bacteria and killing the bacteria to render the wound care system sterile, increasing the absorbency of the first material, or both upon exposure to light. The first material may be cotton, or any suitable fibrous material, the second material may be TiO2, and the light may be UV or visible light. A variety of methods including ALD may be used to coat the first material.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Inventors: Helmut Baumgart, Diefeng Gu
  • Patent number: 7510942
    Abstract: A method of increasing the work function of micro-electrodes includes providing a metal or silica surface functionalized with reactive groups and contacting the functionalized surface with a solution of at least one biochemical, having a permanent dipole moment and being capable of self assembly, for a sufficient time for the biochemical to self assemble molecularly (SAM) on the functionalized surface. The biochemical can be aminopropyl triethoxy silane, fatty acids, organosilicon derivatives, organosulfur compounds, alkyl chains, or diphosphates. Use in a wide variety of metals and metallic compounds is disclosed.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: March 31, 2009
    Assignee: Arizona Board of Regents, Acting for and on behalf of Arizona State University
    Inventors: Sandwip K. Dey, Diefeng Gu, Rizaldi Sistiabudi, Jaydeb Goswami
  • Publication number: 20050127461
    Abstract: A method of increasing the work function of micro-electrodes includes providing a metal or silica surface functionalized with reactive groups and contacting the functionalized surface with a solution of at least one biochemical, having a permanent dipole moment and being capable of self assembly, for a sufficient time for the biochemical to self assemble molecularly (SAM) on the functionalized surface. The biochemical can be aminopropyl triethoxy silane, fatty acids, organosilicon derivatives, organosulfur compounds, alkyl chains, or dihosphates. Use in a wide variety of metals and metallic compounds is disclosed.
    Type: Application
    Filed: November 24, 2004
    Publication date: June 16, 2005
    Inventors: Sandwip Dey, Rizaldi Sistiabudi, Diefeng Gu, Jaydeb Goswami