Patents by Inventor Diego Fernando Rancruel

Diego Fernando Rancruel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10041378
    Abstract: A method for adjusting startup floor pressure levels of HRSG steam circuits is implemented by a pressure controlling computing device including a processor and a memory. The method includes receiving a plurality of measured plant operating values associated with a HRSG steam circuit, identifying a plurality of candidate pressure levels for use in pressurizing the HRSG steam circuit, determining a calculated steam velocity level for each of the plurality of candidate pressure levels, identifying a steam velocity limit for a steam piping section of the HRSG steam circuit, selecting a lowest pressure level of the plurality of candidate pressure levels, wherein the lowest pressure level is associated with a determined calculated steam velocity level that does not exceed the identified velocity limit, and pressurizing the HRSG steam circuit to the selected lowest pressure level.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: August 7, 2018
    Assignee: General Electric Company
    Inventors: Leslie Yung Min Tong, Raub Warfield Smith, Diego Fernando Rancruel, Erhan Karaca, Charles Michael Jones, Bryan Michael Jones
  • Patent number: 9897322
    Abstract: A combustor can assembly includes a plurality of combustor cans spaced circumferentially about a gas turbine engine. Each combustor can is coupled in flow communication with at least one fuel manifold via a respective can fuel line. The combustor can assembly also includes a first interconnecting fuel line that includes a first end and a second end. The first end is coupled in flow communication with the can fuel line of a first combustor can, and the second end is coupled in flow communication with the can fuel line of a second combustor can that is not circumferentially adjacent to the first combustor can. The combustor can assembly further includes a first control device operatively coupled to the can fuel line of the first combustor can. The first control device is operable to change a dynamic operational characteristic of the first and second combustor cans independently of other combustor cans.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: February 20, 2018
    Assignee: General Electric Company
    Inventors: Kihyung Kim, Diego Fernando Rancruel, Prashant C. Mahalingappanavar
  • Patent number: 9822705
    Abstract: A power augmentation system for a gas turbine that is electrically coupled to a power grid incudes, in serial flow order, a compressed air supply, a compressed air storage tank and an expansion turbine that is disposed downstream from the compressed air storage tank. An exhaust outlet of the expansion turbine is in fluid communication with at least one of an inlet section or a compressor of the gas turbine.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: November 21, 2017
    Assignee: GENERAL ELECRIC COMPANY
    Inventors: Kihyung Kim, Diego Fernando Rancruel, Leslie Yung Min Tong, Stephen R. Watts, Kamlesh Mundra
  • Patent number: 9739478
    Abstract: A system includes a heat recovery steam generator (HRSG) having a plurality of evaporator sections. At least one evaporator section includes a forced circulation evaporator configured to generate a saturated steam, a once-through evaporator configured to generate a first superheated steam, and a first superheater configured to receive the saturated steam and the first superheated steam.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: August 22, 2017
    Assignee: General Electric Company
    Inventors: Diego Fernando Rancruel, Drake Joseph Viscome, Elizabeth Angelyn Fadde, Ashlee Nicole Atwell, Kyle Joseph Conger
  • Publication number: 20170122133
    Abstract: Various embodiments include a system having: a computing device configured to control a power plant system including a steam turbine (ST), a gas turbine (GT), and a heat recovery steam generator (HRSG) fluidly connected with the ST and the GT, by performing actions including: obtaining data representing a target steam specific enthalpy in a bowl section of the ST; determining a current steam pressure at an outlet of the HRSG and a current steam temperature at the outlet of the HRSG; calculating an actual steam specific enthalpy in the bowl section of the ST based upon the current steam pressure at the outlet of the HRSG and the current steam temperature at the outlet the HRSG; and modifying a temperature of steam entering the ST in response to determining that the calculated actual steam specific enthalpy in the bowl section differs from the target steam specific enthalpy in the bowl section by a threshold.
    Type: Application
    Filed: November 2, 2015
    Publication date: May 4, 2017
    Inventors: Leslie Yung Min Tong, Kamlesh Mundra, Kowshik Narayanaswamy, Diego Fernando Rancruel, Tad Russel Ripley
  • Publication number: 20170016395
    Abstract: A power augmentation system for a gas turbine that is electrically coupled to a power grid incudes, in serial flow order, a compressed air supply, a compressed air storage tank and an expansion turbine that is disposed downstream from the compressed air storage tank. An exhaust outlet of the expansion turbine is in fluid communication with at least one of an inlet section or a compressor of the gas turbine.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: Kihyung Kim, Diego Fernando Rancruel, Leslie Yung Min Tong, Stephen R. Watts, Kamlesh Mundra
  • Publication number: 20170009996
    Abstract: A combustor can assembly includes a plurality of combustor cans spaced circumferentially about a gas turbine engine. Each combustor can is coupled in flow communication with at least one fuel manifold via a respective can fuel line. The combustor can assembly also includes a first interconnecting fuel line that includes a first end and a second end. The first end is coupled in flow communication with the can fuel line of a first combustor can, and the second end is coupled in flow communication with the can fuel line of a second combustor can that is not circumferentially adjacent to the first combustor can. The combustor can assembly further includes a first control device operatively coupled to the can fuel line of the first combustor can. The first control device is operable to change a dynamic operational characteristic of the first and second combustor cans independently of other combustor cans.
    Type: Application
    Filed: July 7, 2015
    Publication date: January 12, 2017
    Inventors: Kihyung Kim, Diego Fernando Rancruel, Prashant C. Mahalingappanavar
  • Patent number: 9470145
    Abstract: A system for heating fuel in a combined cycle gas turbine includes a fuel heat exchanger downstream from a turbine outlet, and the fuel heat exchanger has an exhaust gas inlet, an exhaust gas outlet, a fuel inlet, and a fuel outlet. A first exhaust gas plenum has a first exhaust gas inlet connection between the turbine outlet and a heat exchanger and a first exhaust gas outlet connection upstream from the exhaust gas inlet. A second exhaust gas plenum has a second exhaust gas inlet connection downstream from at least a portion of the heat exchanger and a second exhaust gas outlet connection upstream from the exhaust gas inlet.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 18, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: David Wesley Ball, Jr., Korey Frederic Rendo, Dean Matthew Erickson, Diego Fernando Rancruel, Leslie Yung-Min Tong
  • Patent number: 9422868
    Abstract: A simple cycle gas turbomachine includes a compressor portion, and a turbine portion having an outlet. At least one combustor is fluidically connected to the compressor portion and the turbine portion. An exhaust member includes an inlet, fluidically connected to the outlet of the turbine portion, a first outlet and a second outlet. A fuel conditioning system includes a heat exchange member provided with a first circuit having an exhaust gas inlet fluidically connected to the second outlet of the exhaust member and an exhaust gas inlet, a second circuit having an inlet fluidically connected to a source of fuel and an outlet fluidically connected to the at least one combustor. A conditioned fluid conduit is fluidically connected between a source of conditioned fluid and one of the combustor assembly and the first outlet of the exhaust member.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: August 23, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Korey Frederic Rendo, David Wesley Ball, Jr., Diego Fernando Rancruel, Ameya Chandrakant Joshi, Michael Brian Smith
  • Publication number: 20160201518
    Abstract: A method for adjusting startup floor pressure levels of HRSG steam circuits is implemented by a pressure controlling computing device including a processor and a memory. The method includes receiving a plurality of measured plant operating values associated with a HRSG steam circuit, identifying a plurality of candidate pressure levels for use in pressurizing the HRSG steam circuit, determining a calculated steam velocity level for each of the plurality of candidate pressure levels, identifying a steam velocity limit for a steam piping section of the HRSG steam circuit, selecting a lowest pressure level of the plurality of candidate pressure levels, wherein the lowest pressure level is associated with a determined calculated steam velocity level that does not exceed the identified velocity limit, and pressurizing the HRSG steam circuit to the selected lowest pressure level.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 14, 2016
    Inventors: Leslie Yung Min Tong, Raub Warfield Smith, Diego Fernando Rancruel, Erhan Karaca, Charles Michael Jones, Bryan Michael Jones
  • Publication number: 20150300261
    Abstract: A fuel heating system for use with a combined cycle gas turbine including a turbine outlet configured to channel a flow of exhaust gas towards a heat recovery steam generator is provided. The system includes a heat exchanger configured to channel a flow of fuel therethrough, and a plurality of heat transfer devices that each include an evaporator portion in thermal communication with the flow of exhaust gas and a condenser portion selectively thermally exposed to the flow of fuel. Each of the plurality of heat transfer devices are configured to conduct different grade heat from the exhaust gas to regulate a temperature of the fuel.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Applicant: General Electric Company
    Inventors: Kihyung Kim, Dean Matthew Erickson, Diego Fernando Rancruel, Leslie Yung-Min Tong
  • Patent number: 9097418
    Abstract: A system includes a heat recovery steam generator (HRSG) including a plurality of evaporator sections. At least one evaporator section includes a natural circulation evaporator configured to generate a saturated steam, a once-through evaporator configured to generate a first superheated steam, a first superheater configured to receive the saturated steam from the natural circulation evaporator, and a second superheater configured to receive the first superheated steam from the once-through evaporator.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: August 4, 2015
    Assignee: General Electric Company
    Inventors: Diego Fernando Rancruel, Drake Joseph Viscome, Elizabeth Angelyn Fadde, Ashlee Nicole Atwell, Kyle Joseph Conger
  • Patent number: 8984892
    Abstract: A combined cycle power plant includes a gas turbomachine, a steam turbomachine operatively coupled to the gas turbomachine, and a heat recovery steam generator operatively coupled to the gas turbomachine and the steam turbomachine. The heat recovery steam generator includes a high pressure reheat section provided with at least one high pressure superheater and at least one reheater. The combined cycle power plant further includes a controller operatively connected to the gas turbomachine, the steam turbomachine and the heat recovery steam generator. The controller is selectively activated to initiate a flow of steam through the heat recovery steam generator following shutdown of the gas turbomachine to lower a temperature of at least one of the high pressure superheater and the at least one reheater and reduce development of condensate quench effects during HRSG purge of a combined cycle power plant shutdown.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Tailai Hu, Kelvin Rafael Estrada, Joel Donnell Holt, Diego Fernando Rancruel, Leslie Yung-Min Tong
  • Publication number: 20140298816
    Abstract: A simple cycle gas turbomachine includes a compressor portion, and a turbine portion having an outlet. At least one combustor is fluidically connected to the compressor portion and the turbine portion. An exhaust member includes an inlet, fluidically connected to the outlet of the turbine portion, a first outlet and a second outlet. A fuel conditioning system includes a heat exchange member provided with a first circuit having an exhaust gas inlet fluidically connected to the second outlet of the exhaust member and an exhaust gas inlet, a second circuit having an inlet fluidically connected to a source of fuel and an outlet fluidically connected to the at least one combustor. A conditioned fluid conduit is fluidically connected between a source of conditioned fluid and one of the combustor assembly and the first outlet of the exhaust member.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Korey Frederic Rendo, David Wesley Ball, JR., Diego Fernando Rancruel, Ameya Chandrakant Joshi, Michael Brian Smith
  • Publication number: 20140216363
    Abstract: A system includes a heat recovery steam generator (HRSG) having a plurality of evaporator sections. At least one evaporator section includes a forced circulation evaporator configured to generate a saturated steam, a once-through evaporator configured to generate a first superheated steam, and a first superheater configured to receive the saturated steam and the first superheated steam.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Diego Fernando Rancruel, Drake Joseph Viscome, Elizabeth Angelyn Fadde, Ashlee Nicole Atwell, Kyle Joseph Conger
  • Publication number: 20140216365
    Abstract: A system includes a heat recovery steam generator (HRSG) including a plurality of evaporator sections. At least one evaporator section includes a natural circulation evaporator configured to generate a saturated steam, a once-through evaporator configured to generate a first superheated steam, a first superheater configured to receive the saturated steam from the natural circulation evaporator, and a second superheater configured to receive the first superheated steam from the once-through evaporator.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Diego Fernando Rancruel, Drake Joseph Viscome, Elizabeth Angelyn Fadde, Ashlee Nicole Atwell, Kyle Joseph Conger
  • Publication number: 20140102071
    Abstract: A system for heating fuel in a combined cycle gas turbine includes a fuel heat exchanger downstream from a turbine outlet, and the fuel heat exchanger has an exhaust gas inlet, an exhaust gas outlet, a fuel inlet, and a fuel outlet. A first exhaust gas plenum has a first exhaust gas inlet connection between the turbine outlet and a heat exchanger and a first exhaust gas outlet connection upstream from the exhaust gas inlet. A second exhaust gas plenum has a second exhaust gas inlet connection downstream from at least a portion of the heat exchanger and a second exhaust gas outlet connection upstream from the exhaust gas inlet.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Wesley Ball, JR., Korey Frederic Rendo, Dean Matthew Erickson, Diego Fernando Rancruel, Leslie Yung-Min Tong
  • Publication number: 20140069078
    Abstract: The present application and the resultant patent provide a combined cycle system with a flow of feed water therein. The combined cycle system may include a gas turbine, a steam turbine, a heat exchanger with the flow of feed water flowing therethrough, an expansion source for expanding the flow of feed water, and a supplemental power generation system positioned between the heat exchanger and the expansion source and driven by the flow of feed water.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Leslie Yung-Min Tong, Diego Fernando Rancruel, Kihyung Kim
  • Patent number: 8528314
    Abstract: A combined cycle power plant startup system is provided. The system includes a steam turbine, a HRSG, a condenser, and a bypass system. The steam turbine may include a turbine section. The HRSG may be operably connected to the steam turbine for providing steam to the steam turbine. The HRSG may include a reheater. The bypass system may be configured to adjust the steam pressure downstream of the reheater by routing steam downstream of the reheater to the condenser. The bypass system may include at least one bypass line, at least one control valve operably connected to the at least one bypass line, a pressure gauge configured to monitor the steam pressure downstream of the reheater, and a controller configured to communicate with the pressure gauge and operate the at least one control valve.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Leslie Yung-Min Tong, Diego Fernando Rancruel, Tailai Hu, Joel Donnell Holt
  • Publication number: 20130167557
    Abstract: A power plant includes a compressor configured to compress inlet air for combustion. The power plant also includes an air separation unit configured to receive and remove nitrogen from an air supply. The power plant further includes a fluid manipulator operably coupled to the air separation unit and the compressor, wherein the fluid manipulator is configured to receive nitrogen removed from the air separation unit at an inlet pressure and an inlet temperature and produce a modified pressure and a modified temperature of the nitrogen prior to selectively delivering the nitrogen to the compressor.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kihyung Kim, Barrett David Gardiner, Diego Fernando Rancruel