Patents by Inventor Dieter Hess

Dieter Hess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10890292
    Abstract: A device for detecting a movement of a piston of a lubricant distributor includes a movable actuator including a first magnet element, and a movable indicator including a second magnet element. The actuator is configured to be moved from an initial actuator position to an end actuator position by a movement of the piston, and the actuator and the indicator are configured and disposed such that a magnetic force prevails between them such that the indicator is moved from an initial indicator position to an end indicator position by the movement of the actuator from the initial actuator position toward the end actuator position.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: January 12, 2021
    Assignee: SKF Lubrication Systems Germany GmbH
    Inventors: Dieter Hess, Juergen Kreutzkaemper, Tobias Mueller, Jan Ruiter, Andreas Schoenfeld, Stefan Schuemann
  • Publication number: 20200318658
    Abstract: A switching device for alternately connecting a hydraulic drive of a lubricating pump to a pressure line and to a return line of a hydraulic circuit. The switching device includes first and second drive lines connected to the hydraulic drive, and pressure and return drive lines connected to the pressure and return lines. A switching valve is in fluid communication with the drive lines and is switchable between first and second switching states to connect the pressure drive line to the first drive line or to the second drive line. A plurality of hydraulic control lines control the position of the switching valve. The drive lines are configured to conduct a first volumetric flow of hydraulic fluid and the hydraulic control lines are configured to conduct a second volumetric flow of the hydraulic fluid different than the first volumetric flow.
    Type: Application
    Filed: March 9, 2020
    Publication date: October 8, 2020
    Inventors: Dieter Hess, Juergen Kreutzkaemper, Stefan Schuermann
  • Patent number: 10562838
    Abstract: Process comprising the following process steps: a) introducing an ethylenically unsaturated compound; b) adding a ligand-metal complex comprising Pd and a bidentate phosphine ligand, or adding a bidentate phosphine ligand and a compound which comprises Pd; c) adding an alcohol; d) supplying CO; e) heating the reaction mixture, the ethylenically unsaturated compound being reacted to form an ester, where the reaction mixture is admixed with less than 0.1 mol %, based on the amount of substance of the ethylenically unsaturated compound, of Brønsted acids having an acid strength of pKa?3, characterized in that the phosphine ligand is substituted on at least one phosphorus atom by at least one heteroaryl radical.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: February 18, 2020
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Xianjie Fang, Kaiwu Dong, Helfried Neumann, Ralf Jackstell, Matthias Beller, Dirk Fridag, Dieter Hess, Katrin Marie Dyballa, Frank Geilen, Robert Franke
  • Patent number: 10544174
    Abstract: The invention relates to a process comprising the following process steps: a) introducing an ethylenically unsaturated compound; b) adding a monophosphine ligand and a compound which comprises Pd, or adding a complex comprising Pd and a monophosphine ligand; c) adding an aliphatic alcohol; d) supplying CO; e) heating the reaction mixture, the ethylenically unsaturated compound being reacted to form an ester; where the monophosphine ligand is a compound of formula (I) where R1 is selected from —(C1-C12)-alkyl, —O—(C1-C12)-alkyl, —O—(C6-C20)-aryl, —(C6-C20)-aryl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C3-C20)-heteroaryl; R2 is selected from —(C6-C20)-aryl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C3-C20)-heteroaryl; R3 is —(C3-C20)-heteroaryl; and R1, R2 and R3 may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C1-C12)-alkyl-(C6-C20)-aryl, —O—(C3-C12)-cyclo
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: January 28, 2020
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Ralph Jackstell, Matthias Beller, Dirk Fridag, Dieter Hess, Katrin Marie Dyballa, Frank Geilen, Robert Franke
  • Patent number: 10526356
    Abstract: The invention relates to bisphosphites having 2,4-tert-butylphenyl units and a method for the preparation thereof. Furthermore, the invention relates to the use of the compounds as ligands in a ligand-metal complex. The compound, and also the complex, may be used as a catalytically active composition in hydroformylation reactions.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: January 7, 2020
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Katrin Marie Dyballa, Robert Franke, Dirk Fridag, Dieter Hess
  • Patent number: 10494326
    Abstract: The invention relates to a process comprising the following process steps: a) introducing an ether having 3 to 30 carbon atoms; b) adding a phosphine ligand and a compound which comprises Pd, or adding a complex comprising Pd and a phosphine ligand; c) adding an alcohol; d) supplying CO; e) heating the reaction mixture, the ether being reacted for form an ester; where the phosphine ligand is a compound of formula (I) where m and n are each independently 0 or 1; R1, R2, R3, R4 are each independently selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, —(C3-C20)-heteroaryl; at least one of the R1, R2, R3, R4 radicals is a —(C3-C20)-heteroaryl radical; and R1, R2, R3, R4, if they are —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl or —(C3-C20)-heteroaryl, may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: December 3, 2019
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Ralf Jackstell, Helfried Neumann, Matthias Beller, Dirk Fridag, Dieter Hess, Katrin Marie Dyballa, Frank Geilen, Robert Franke
  • Publication number: 20190170295
    Abstract: A lubricating-grease pump includes a pumping chamber, a leakage accumulation chamber, a seal configured to substantially seal the pumping chamber from the leakage accumulation chamber, at least one outlet from the pumping chamber, and at least one leakage-recovery arrangement configured to guide a quantity of grease that has leaked from the pumping chamber into the leakage accumulation chamber back into the pumping chamber. The leakage-recovery arrangement may include a first passageway connecting the leakage accumulation chamber to a storage region, a second passageway connecting the first passageway to the pumping chamber and a spring-biased piston in the storage region.
    Type: Application
    Filed: November 9, 2018
    Publication date: June 6, 2019
    Inventors: Dieter Hess, Juergen Kreutzkaemper, Andreas Schoenfeld, Stefan Schuermann
  • Patent number: 10294191
    Abstract: The invention relates to compounds of formula (I) where R1 is selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl; R2 is selected from —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, —(C3-C20)-heteroaryl; R3 is —(C3-C20)-heteroaryl; and R1, R2 and R3 may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C1-C12)-alkyl-(C6-C20)-aryl, —O—(C3-C12)-cycloalkyl, —S—(C1-C12)-alkyl, —S—(C3-C12)-cycloalkyl, —COO—(C1-C12)-alkyl, —COO—(C3-C12)-cycloalkyl, —CONH—(C1-C12)-alkyl, —CONH—(C3-C12)-cycloalkyl, —CO—(C1-C12)-alkyl, —COO—(C3-C12)-cycloalkyl, —N—[(C1-C12)-alkyl]2, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C3-C20)-heteroaryl, —(C3-C20)-heteroaryl-(C1-C12)-alkyl, —(C3-C20)-heteroaryl-O—(C1-C12)-alkyl, —COOH, —OH, —SO3H, —NH2, halogen.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 21, 2019
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Ralf Jackstell, Matthias Beller, Robert Franke, Dieter Hess, Katrin Marie Dyballa, Dirk Fridag, Frank Geilen
  • Patent number: 10202329
    Abstract: The invention relates to a compound of formula (I) where R1 and R3 are each a heteroaryl radical having five ring atoms, R2 and R4 are each independently selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl; R1 and R3 may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C1-C12)-alkyl-(C6-C20)-aryl, —O—(C3-C12)-cycloalkyl, —S—(C1-C12)-alkyl, —S—(C3-C12)-cycloalkyl, —COO—(C1-C12)-alkyl, —COO—(C3-C12)-cycloalkyl, —CONH—(C1-C12)-alkyl, —CONH—(C3-C12)-cycloalkyl, —CO—(C1-C12)-alkyl, —CO—(C3-C12)-cycloalkyl, —N—[(C1-C12)-alkyl]2, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C3-C20)-heteroaryl, —(C3-C20)-heteroaryl-(C1-C12)-alkyl, —(C3-C20)-heteroaryl-O—(C1-C12)-alkyl, —COOH, —OH, —SO3H, —NH2, halogen; and R2 and R4, if they are —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl or —(C6-C20)-aryl, may e
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: February 12, 2019
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Helfried Neumann, Ralf Jackstell, Matthias Beller, Robert Franke, Dieter Hess, Katrin Marie Dyballa, Dirk Fridag, Frank Geilen
  • Patent number: 10202409
    Abstract: Compound of formula (I) where R2, R4 are each independently selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl; the R1, R3 radicals are each a —(C3-C20)-heteroaryl radical; R1, R3 may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C1-C12)-alkyl-(C6-C20)-aryl, —O—(C3-C12)-cycloalkyl, —S—(C1-C12)-alkyl, —S—(C3-C12)-cycloalkyl, —COO—(C1-C12)-alkyl, —COO—(C3-C12)-cycloalkyl, —CONH—(C1-C12)-alkyl, —CONH—(C3-C12)-cycloalkyl, —CO—(C1-C12)-alkyl, —CO—(C3-C12)-cycloalkyl, —N—[(C1-C12)-alkyl]2, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C3-C20)-heteroaryl, —(C3-C20)-heteroaryl-(C1-C12)-alkyl, —(C3-C20)-heteroaryl-O—(C1-C12)-alkyl, —COOH, —OH, —SO3H, —NH2, halogen; R2, R4, if they are —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl or —(C6-C20)-aryl, may each independently be substituted by one or
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: February 12, 2019
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Ralf Jackstell, Helfried Neumann, Matthias Beller, Dirk Fridag, Dieter Hess, Katrin Marie Dyballa, Frank Geilen, Robert Franke
  • Patent number: 10167245
    Abstract: A catalytic method for hydroformylating cyclooctadiene substrate involving forming a reaction mixture that includes the cyclooctadiene and a precursor of or a transitional metal ligand complex where the ligand has structure (1): (1) H2 and CO are fed into the reaction mixture and the mixture is heated to convert the cyclooctadiene into an aldehyde. A preferred ligand is 4-([1,1?:3?,1?-terphenyl]-2?-yloxy)-S-dinaphtho[2,1-d:1?,2?-f][1,3,2]dioxaphosphepine.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 1, 2019
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Katrin Marie Dyballa, Robert Franke, Dirk Fridag, Dieter Hess, Detlef Selent, Armin Börner
  • Patent number: 10167244
    Abstract: A catalytic method for hydroformylating a cyclooctadiene substrate involving forming a reaction mixture that includes the cyclooctadiene and a precursor of or a transitional metal ligand complex where the ligand has structure (1): H2 and CO are fed into the reaction mixture and the mixture is heated to convert the cyclooctadiene into an aldehyde. A preferred ligand is 2-(anthracen-9-yloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 1, 2019
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Katrin Marie Dyballa, Robert Franke, Dirk Fridag, Dieter Hess, Detlef Selent, Armin Börner
  • Publication number: 20180290958
    Abstract: Method for hydroformylating cyclooctadiene using 4-([1,1?:3?,1?-terphenyl]-2?-yloxy)-S-dinaphtho[2,1-d:1?,2?-f][1,3,2]dioxaphosphepine.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 11, 2018
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Katrin Marie DYBALLA, Robert FRANKE, Dirk FRIDAG, Dieter HESS, Detlef SELENT, Armin BÖRNER
  • Publication number: 20180290956
    Abstract: Method for hydroformylating cyclooctadiene using 2-(anthracen-9-yloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 11, 2018
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Katrin Marie DYBALLA, Robert FRANKE, Dirk FRIDAG, Dieter HESS, Detlef SELENT, Armin BÖRNER
  • Patent number: 10087134
    Abstract: The invention relates to a process comprising the process steps of: a) initially charging an ether having from 3 to 30 carbon atoms; b) adding a phosphine ligand and a compound comprising Pd, or adding a comprising Pd and a phosphine ligand; c) feeding in CO; d) heating the reaction mixture, with conversion of the ether; wherein the phosphine ligand is a compound of formula (I) where m and n are each independently 0 or 1; R1, R2, R3, R4 are each independently selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, —(C3-C20)-heteroaryl; at least one of the R1, R2, R3, R4 radicals is a —(C3-C20)-heteroaryl radical; and R1, R2, R3, R4, if they are —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl or —(C3-C20)-heteroaryl, may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C1-C12)-alkyl-(C6-C20)-aryl, —O—(C3-C12)-c
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: October 2, 2018
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Ralf Jackstell, Helfried Neumann, Matthias Beller, Dirk Fridag, Dieter Hess, Katrin Marie Dyballa, Frank Geilen, Robert Franke
  • Publication number: 20180267492
    Abstract: A method for automated configuration of an industrial controller comprises the steps of providing an identification from an industrial controller to a server connected to said industrial controller via a network, said identification identifying said industrial controller, and receiving, from said server via said network, an industrial program and/or a parameter for an industrial program in accordance with said identification.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 20, 2018
    Inventors: Christoph Schneider, Dieter Hess
  • Patent number: 10077228
    Abstract: The invention relates to a compound of formula (I) where R1, R2, R3, R4 are each independently selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, —(C3-C20)-heteroaryl; at least one of the R1, R2, R3, R4 radicals is a —(C6-C20)-heteroaryl radical having at least six ring atoms; and R1, R2, R3, R4, if they are —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —(C6-C20)-aryl, —(C3-C20)-heteroaryl or —(C6-C20)-heteroaryl, may each independently be substituted by one or more substituents selected from —(C1-C12)-alkyl, —(C3-C12)-cycloalkyl, —(C3-C12)-heterocycloalkyl, —O—(C1-C12)-alkyl, —O—(C1-C12)-alkyl-(C6-C20)-aryl, —O—(C3-C12)-cycloalkyl, —S—(C1-C12)-alkyl, —S—(C3-C12)-cycloalkyl, —COO—(C1-C12)-alkyl, —COO—(C3-C12)-cycloalkyl, —CONH—(C1-C12)-alkyl, —CONH—(C3-C12)-cycloalkyl, —CO—(C1-C12)-alkyl, —CO—(C3-C12)-cycloalkyl, —N—[(C1-C12)-alkyl]2, —(C6-C20)-aryl, —(C6-C20)-aryl-(C1-C12)-alkyl, —(C6-C20)-aryl-O—(C1-C12)-alkyl, —(C3-C20)-heteroaryl, —(
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: September 18, 2018
    Assignee: EVONIK DEGUSSA GMBH
    Inventors: Kaiwu Dong, Helfried Neumann, Ralf Jackstell, Matthias Beller, Robert Franke, Dieter Hess, Katrin Marie Dyballa, Dirk Fridag, Frank Geilen
  • Publication number: 20180224011
    Abstract: A lubricant reservoir system includes a lubricant reservoir having an interior wall and an inlet for receiving lubricant from a supply. A follower device in the reservoir contacts the interior wall of the reservoir in a sliding and sealing manner, and the follower device is movable up and down in the reservoir from a first position to a second position in response to a changing lubricant level. A valve is in fluid communication with the inlet and is configured to selectively prevent a flow of the lubricant through the inlet. A connector operatively connects the follower device to the valve unit such that the flow of the lubricant through the inlet is prevented when the follower device is in the second position. The connector is configured such that the valve is positionable independently of the reservoir.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 9, 2018
    Inventors: Markus Mandera, Dieter Hess, Tobias Mueller, Andreas Schoenfeld
  • Patent number: 10017443
    Abstract: The invention relates to a method for producing alcohols by homogeneously catalyzed hydroformylation of olefins to aldehydes and subsequent hydration of the aldehydes. The invention further relates to a system for carrying out the method. The main focus is on the separation technique for work-up of the hydroformylation mixture. The problem addressed by the invention is that specifying a work-up method for hydroformylation mixtures that utilizes the specific advantages of known separation technologies but at the same time largely avoids the specific disadvantages of said separation technologies. The most important objective is to create a catalyst separation system that is as complete and at the same time conservative as possible and that operates in a technically reliable manner and entails low investment and operating costs. The method should be unrestrictedly suitable for processing the reaction output from oxo systems in “world scale” format.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: July 10, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Hans-Gerd Lueken, Bart Hamers, Dirk Fridag, Robert Franke, Markus Priske, Dieter Hess, Marc Becker, Markus Rudek
  • Publication number: 20180149461
    Abstract: A device for detecting a movement of a piston of a lubricant distributor includes a movable actuator including a first magnet element, and a movable indicator including a second magnet element. The actuator is configured to be moved from an initial actuator position to an end actuator position by a movement of the piston, and the actuator and the indicator are configured and disposed such that a repulsive magnetic force prevails between them such that the indicator is moved from an initial indicator position to an end indicator position by the movement of the actuator from the initial actuator position toward the end actuator position.
    Type: Application
    Filed: November 29, 2017
    Publication date: May 31, 2018
    Inventors: Dieter Hess, Juergen Kreutzkaemper, Tobias Mueller, Jan Ruiter, Andreas Schoenfeld, Schuermann Stefan