Patents by Inventor Dieter Huhse

Dieter Huhse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240060898
    Abstract: A method can be used for correcting background signals in captured measurement values of analog detectors, wherein measurement values of an object captured over a reference time period are analyzed and characteristic values of captured background signals are determined. What is characteristic of this is that a threshold value is determined on the basis of at least one characteristic value and by applying a calculation specification; the threshold value is applied to captured measurement values of an analog detector, and only those measurement values which are greater than the threshold value are used for a subsequent signal evaluation. A microscope for carrying out the method according to the invention is also provided.
    Type: Application
    Filed: August 18, 2023
    Publication date: February 22, 2024
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Stanislav Kalinin, Dieter Huhse
  • Publication number: 20240060894
    Abstract: The invention relates to an FCS method in which a sample that is to be measured and has fluorescent markers is illuminated with excitation radiation over a bleaching time in order to bleach selected fluorescent markers; and after bleaching has been carried out over at least one measurement period, FCS measurement data of the sample are acquired by illuminating the sample with excitation radiation and by detecting detection radiation brought about by the excitation radiation. The invention is characterized in that during the bleaching time, intensity values of fluorescence radiation that has been brought about by the excitation radiation which is directed at the sample for bleaching purposes are continuously or repeatedly acquired and compared with a threshold value, and the acquisition of the FCS measurement data is started when the threshold value has been reached.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 22, 2024
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Dieter Huhse, Stanislav Kalinin
  • Publication number: 20240061227
    Abstract: A microscopy method involves directing a focused beam of excitation radiation at an examination location of an object to be examined, to create an excitation volume in the object. An overview image is used to identify at least one structure of the object and define at least one of the identified structures as a reference structure. A spatial relationship is defined between the positions of the examination location and the reference structure. Detection radiation coming from the excitation volume is acquired as measurement values over an overall measurement duration, the overall measurement duration being subdivided into a plurality of measurement intervals. At least every second measurement interval is preceded by a comparison of the current position of the focused beam with a current position of the examination location. The positioning of the focused beam is corrected in the case of an inadmissible deviation of the current positions.
    Type: Application
    Filed: August 18, 2023
    Publication date: February 22, 2024
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Dieter Huhse, Stanislav Kalinin
  • Patent number: 11714269
    Abstract: Apparatus and method for capturing an image having a detection beam path for guiding detection radiation from a sample to a detector having a plurality of detector elements. The detector has no more than ten and, preferably, four or five detector elements; and an evaluation unit, which is configured to carry out an evaluation in accordance with the Airyscan method on the image data captured by means of the detector and which generates a high-resolution image.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: August 1, 2023
    Assignee: CARL ZEISS MICROSCOPY GMBH
    Inventors: Oliver Holub, Mirko Liedtke, Stanislav Kalinin, Dieter Huhse
  • Publication number: 20210278650
    Abstract: The invention relates to an image capturing apparatus and method having a detection beam path for guiding detection radiation from a sample to a detector having a plurality of detector elements. The detector has no more than ten and, in particular, four or five detector elements; and an evaluation unit is present, which is configured to carry out an evaluation in accordance with the Airyscan method on the image data captured by means of the detector and which generates a high-resolution image.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 9, 2021
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Oliver Holub, Mirko Liedtke, Stanislav Kalinin, Dieter Huhse
  • Publication number: 20200326555
    Abstract: A graduated filter arrangement, an optical arrangement having a graduated filter arrangement, and uses of a graduated filter arrangement, where the filter arrangement has a graduated filter that is moveable in relation to a beam path and is provided in an intended filter plane, and a mirror in a mirror plane. The mirror plane and the intended filter plane are aligned fixedly in relation to one another and relative to one another in such a way that a beam of light rays that is incident at an angle of incidence along the beam path is reflected, at least in part, between the graduated filter and the mirror in such a way that there at least is a two-fold deflection of the incident light ray by the graduated filter arrangement and the reflected light ray is reflected as a beam of reflected light rays at a deflection angle.
    Type: Application
    Filed: May 23, 2017
    Publication date: October 15, 2020
    Applicant: Carl Zeiss Microscopy GmbH
    Inventors: Dr. Matthias WALD, Dr. Dieter HUHSE
  • Publication number: 20150077843
    Abstract: A microscope and method for high resolution scanning microscopy of a sample, having: an illumination device for the purpose of illuminating the sample, an imaging device for the purpose of scanning at least one point or linear spot over the sample and of imaging the point or linear spot into a diffraction-limited, static single image below an imaging scale in a detection plane. A detector device is used for the purpose of detecting the single image in the detection plane for various scan positions, with a location accuracy which, taking into account the imaging scale in at least one dimension/measurement, is at least twice as high as a full width at half maximum of the diffraction-limited single image. A non-imaging redistribution element is arranged in front of a detector array of the detector and which distributes the radiation from the detection plane onto the pixels of the detector array in a non-imaging manner, and the redistribution element comprises a bundle of optical fibers.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventor: Dieter HUHSE
  • Patent number: 8879072
    Abstract: Laser scanning microscope and method for the operation thereof having at least two detection channels which has at least one beamsplitter with a splitting of the sample light deviating from the 50:50 split and/or, with 50:50 split in the detection channels, has detectors with differently adjusted gain, or in at least one detection channel with equal light splitting has an additional light attenuator.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: November 4, 2014
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Nils Langholz, Dieter Huhse
  • Patent number: 8830563
    Abstract: The invention makes it possible to adjust the light intensity of a laser scanning microscope laser beam in an economical manner and with high accuracy. A separate acousto-optic component can be omitted in that a light modulation section such as an electroabsorption modulator (EAM) or a semiconductor amplifier (SOA) is arranged directly at the laser diode, advisably at one of its front sides. It is nevertheless possible to control the light intensity economically and with high accuracy because the important parameters of the laser beam remain unchanged when the optical output power is changed by the light modulation section. The light modulation section is preferably formed integral with the laser diode in at least one material layer.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: September 9, 2014
    Assignee: Carl Zeiss MicroImaging GmbH
    Inventors: Dieter Huhse, Stefan Wilhelm
  • Patent number: 8553324
    Abstract: The invention relates to a laser scanning microscope with a scanner and a microscope objective, and to a control method for such a microscope. In order to obtain sharp imaging of the sample in a laser scanning microscope, the distance between the microscope objective and the sample is usually varied for adjusting the focus position. However, relative movements between the objective and the sample can be problematic. In view of the costly special objective, internal focusing of the objective is a disadvantageous solution. An improved laser scanning microscope should make it possible to sharply image a sample with standard objectives without relative movement between the microscope objective and sample. According to the invention, a tube lens is provided which is displaceable along the optical axis, and the focus position is adjustable relative to a front optical element of the microscope objective by adjusting the tube lens.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: October 8, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Joerg Pacholik, Marco Hanft, Dieter Huhse
  • Patent number: 8530810
    Abstract: A laser scanning microscope (LSM) having variable light intensity and a control method for the same. The light intensity of a laser beam in an LSM has been controlled to date with high accuracy, but also high costs by means of an acousto-optic component (AOM, AOTF). According to the invention, such a component for beam modulation is to be omitted, without reducing the exposure accuracy of the sample. In an LSM, a directly modulated laser diode (10) is used with an electric control (12) for direct modulation. Said laser diode (10) has a turn-on delay of the light intensity that is dependent on the amount of the control variable when subjected to an electric control variable. The control (12) is designed such that the fluctuation width (??tV) of the occurring turn-on delay (?tV) is smaller than 1 ?s, particularly smaller than 0.5 ?s. Thus highly exact modulation without an acousto-optic component is possible.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: September 10, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Dieter Huhse, Stefan Wilhelm, Hans Schlüter, Alexander Liebhold, Erhardt Hülβe, Uwe Patz
  • Patent number: 8477418
    Abstract: A confocal laser microscope has at least one laser whose illumination light is transmitted in direction of the microscope objective by at least one light-conducting fiber. The light-conducting fiber can be plugged in at a housing which preferably comprises the scanning head of the microscope, and a holder is provided which can be plugged into the housing and into which the light-conducting fiber projects and which is provided at its end remote of the fiber with first optics for transmitting the laser light exiting divergently from the fiber in direction of at least partially displaceable collimating optics in the housing. At least second optics are advantageously arranged between the first optics and the collimating optics.
    Type: Grant
    Filed: February 9, 2008
    Date of Patent: July 2, 2013
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Stefan Wilhelm, Dieter Huhse
  • Publication number: 20120229815
    Abstract: Laser scanning microscope and method for the operation thereof having at least two detection channels which has at least one beamsplitter with a splitting of the sample light deviating from the 50:50 split and/or, with 50:50 split in the detection channels, has detectors with differently adjusted gain, or in at least one detection channel with equal light splitting has an additional light attenuator.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 13, 2012
    Inventors: NILS LANGHOLZ, Dieter Huhse
  • Publication number: 20120229879
    Abstract: A mirror cascade for the adjustment-free bundling of a plurality of light sources to be coupled into the beam path of a laser scanning microscope, comprising a beam combiner housing in which the mirror cascade is located, wherein the beam combiner housing can be either mounted directly on a scanning head of a laser scanning microscope and has a direct optical connection thereto or can be mounted on a microscope housing and has an optical connection thereto or is directly arranged in the scanning head. The invention further relates to a laser scanning microscope with such a mirror cascade.
    Type: Application
    Filed: December 12, 2011
    Publication date: September 13, 2012
    Applicant: CARL ZEISS MICROIMAGING GMBH
    Inventors: Dieter HUHSE, Dieter SCHAU, Stefan WILHELM
  • Publication number: 20110096386
    Abstract: The invention makes it possible to adjust the light intensity of a laser scanning microscope laser beam in an economical manner and with high accuracy. A separate acousto-optic component can be omitted in that a light modulation section such as an electroabsorption modulator (EAM) or a semiconductor amplifier (SOA) is arranged directly at the laser diode, advisably at one of its front sides. It is nevertheless possible to control the light intensity economically and with high accuracy because the important parameters of the laser beam remain unchanged when the optical output power is changed by the light modulation section. The light modulation section is preferably formed integral with the laser diode in at least one material layer.
    Type: Application
    Filed: June 12, 2009
    Publication date: April 28, 2011
    Inventors: Dieter Huhse, Stefan Wilhelm
  • Publication number: 20110051234
    Abstract: A laser scanning microscope (LSM) having variable light intensity and a control method for the same. The light intensity of a laser beam in an LSM has been controlled to date with high accuracy, but also high costs by means of an acousto-optic component (AOM, AOTF). According to the invention, such a component for beam modulation is to be omitted, without reducing the exposure accuracy of the sample. In an LSM, a directly modulated laser diode (10) is used with an electric control (12) for direct modulation. Said laser diode (10) has a turn-on delay of the light intensity that is dependent on the amount of the control variable when subjected to an electric control variable. The control (12) is designed such that the fluctuation width (??tV) of the occurring turn-on delay (?tV) is smaller than 1 ?s, particularly smaller than 0.5 ?s. Thus highly exact modulation without an acousto-optic component is possible.
    Type: Application
    Filed: January 13, 2009
    Publication date: March 3, 2011
    Inventors: Dieter Huhse, Stefan Wilhelm, Hans Schlüter, Alexander Liebhold, Erhardt Hülsse, Uwe Patz
  • Publication number: 20100254000
    Abstract: A mirror cascade for the adjustment-free bundling of a plurality of light sources to be coupled into the beam path of a laser scanning microscope, comprising a beam combiner housing in which the mirror cascade is located, wherein the beam combiner housing can be either mounted directly on a scanning head of a laser scanning microscope and has a direct optical connection thereto or can be mounted on a microscope housing and has an optical connection thereto or is directly arranged in the scanning head. The invention further relates to a laser scanning microscope with such a mirror cascade.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 7, 2010
    Inventors: Dieter HUHSE, Dieter SCHAU, Stefan WILHELM
  • Publication number: 20100214653
    Abstract: The invention relates to a laser scanning microscope with a scanner and a microscope objective, and to a control method for such a microscope. In order to obtain sharp imaging of the sample in a laser scanning microscope, the distance between the microscope objective and the sample is usually varied for adjusting the focus position. However, relative movements between the objective and the sample can be problematic. In view of the costly special objective, internal focusing of the objective is a disadvantageous solution. An improved laser scanning microscope should make it possible to sharply image a sample with standard objectives without relative movement between the microscope objective and sample. According to the invention, a tube lens is provided which is displaceable along the optical axis, and the focus position is adjustable relative to a front optical element of the microscope objective by adjusting the tube lens.
    Type: Application
    Filed: August 6, 2008
    Publication date: August 26, 2010
    Inventors: Joerg Pacholik, Marco Hanft, Dieter Huhse
  • Publication number: 20100027108
    Abstract: A confocal laser microscope has at least one laser whose illumination light is transmitted in direction of the microscope objective by at least one light-conducting fiber. The light-conducting fiber can be plugged in at a housing which preferably comprises the scanning head of the microscope, and a holder is provided which can be plugged into the housing and into which the light-conducting fiber projects and which is provided at its end remote of the fiber with first optics for transmitting the laser light exiting divergently from the fiber in direction of at least partially displaceable collimating optics in the housing. At least second optics are advantageously arranged between the first optics and the collimating optics.
    Type: Application
    Filed: February 9, 2008
    Publication date: February 4, 2010
    Inventors: Stefan Wilhelm, Dieter Huhse
  • Publication number: 20090303584
    Abstract: A method for laser scanning microscopy is characterized by the use of encapsulated fiber multiplexers from the telecommunications field for combining the beams of a plurality of lasers of different wavelengths and coupling them together into a laser scanning microscope and by corresponding beam combiners. Light-conducting guides to which different lasers can be coupled, preferably by light guides, are advantageously guided out of an encapsulated component.
    Type: Application
    Filed: July 24, 2007
    Publication date: December 10, 2009
    Inventors: Joerg Pacholik, Dieter Huhse, Thomas Paatzsch