Patents by Inventor Dieter Linke

Dieter Linke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8882912
    Abstract: Techniques for the formation of a silicon ingot using a low-grade silicon feedstock include forming within a crucible device a molten silicon from a low-grade silicon feedstock and performing a directional solidification of the molten silicon to form a silicon ingot within the crucible device. The directional solidification forms a generally solidified quantity of silicon and a generally molten quantity of silicon. The method and system include removing from the crucible device at least a portion of the generally molten quantity of silicon while retaining within the crucible device the generally solidified quantity of silicon. Controlling the directional solidification of the generally solidified quantity of silicon, while removing the more contaminated molten silicon, results in a silicon ingot possessing a generally higher grade of silicon than the low-grade silicon feedstock.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 11, 2014
    Assignee: Silicor Materials Inc.
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Patent number: 8316745
    Abstract: Techniques are here disclosed for a solar cell pre-processing method and system for annealing and gettering a solar cell semiconductor wafer having an undesirably high dispersion of transition metals, impurities and other defects. The process forms a surface contaminant layer on the solar cell semiconductor (e.g., silicon) wafer. A surface of the semiconductor wafer receives and holds impurities, as does the surface contaminant layer. The lower-quality semiconductor wafer includes dispersed defects that in an annealing process getter from the semiconductor bulk to form impurity cluster toward the surface contaminant layer. The impurity clusters form within the surface contaminant layer while increasing the purity level in wafer regions from which the dispersed defects gettered. Cooling follows annealing for retaining the impurity clusters and, thereby, maintaining the increased purity level of the semiconductor wafer in regions from which the impurities gettered.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: November 27, 2012
    Assignee: Calisolar Inc.
    Inventors: Fritz G. Kirscht, Kamel Ounadjela, Jean Patrice Rakotoniaina, Dieter Linke
  • Publication number: 20110309478
    Abstract: Techniques are here disclosed for a solar cell pre-processing method and system for annealing and gettering a solar cell semiconductor wafer having an undesirably high dispersion of transition metals, impurities and other defects. The process forms a surface contaminant layer on the solar cell semiconductor (e.g., silicon) wafer. A surface of the semiconductor wafer receives and holds impurities, as does the surface contaminant layer. The lower-quality semiconductor wafer includes dispersed defects that in an annealing process getter from the semiconductor bulk to form impurity cluster toward the surface contaminant layer. The impurity clusters form within the surface contaminant layer while increasing the purity level in wafer regions from which the dispersed defects gettered. Cooling follows annealing for retaining the impurity clusters and, thereby, maintaining the increased purity level of the semiconductor wafer in regions from which the impurities gettered.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicant: Calisolar, Inc.
    Inventors: Fritz Kirscht, Kamel Ounadjela, Jean Patrice Rakotoniana, Dieter Linke
  • Publication number: 20110211995
    Abstract: Techniques for the formation of a silicon ingot using a low-grade silicon feedstock include forming within a crucible device a molten silicon from a low-grade silicon feedstock and performing a directional solidification of the molten silicon to form a silicon ingot within the crucible device. The directional solidification forms a generally solidified quantity of silicon and a generally molten quantity of silicon. The method and system include removing from the crucible device at least a portion of the generally molten quantity of silicon while retaining within the crucible device the generally solidified quantity of silicon. Controlling the directional solidification of the generally solidified quantity of silicon, while removing the more contaminated molten silicon, results in a silicon ingot possessing a generally higher grade of silicon than the low-grade silicon feedstock.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 1, 2011
    Applicant: Calisolar, Inc.
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Patent number: 8008107
    Abstract: Techniques are here disclosed for a solar cell pre-processing method and system for annealing and gettering a solar cell semiconductor wafer having an undesirably high dispersion of transition metals, impurities and other defects. The process forms a surface contaminant layer on the solar cell semiconductor (e.g., silicon) wafer. A surface of the semiconductor wafer receives and holds impurities, as does the surface contaminant layer. The lower-quality semiconductor wafer includes dispersed defects that in an annealing process getter from the semiconductor bulk to form impurity cluster toward the surface contaminant layer. The impurity clusters form within the surface contaminant layer while increasing the purity level in wafer regions from which the dispersed defects gettered. Cooling follows annealing for retaining the impurity clusters and, thereby, maintaining the increased purity level of the semiconductor wafer in regions from which the impurities gettered.
    Type: Grant
    Filed: December 30, 2006
    Date of Patent: August 30, 2011
    Assignee: Calisolar, Inc.
    Inventors: Fritz Kirscht, Kamel Ounadjela, Jean Patrice Rakotoniana, Dieter Linke
  • Patent number: 7955433
    Abstract: Techniques for the formation of a silicon ingot using a low-grade silicon feedstock include forming within a crucible device a molten silicon from a low-grade silicon feedstock and performing a directional solidification of the molten silicon to form a silicon ingot within the crucible device. The directional solidification forms a generally solidified quantity of silicon and a generally molten quantity of silicon. The method and system include removing from the crucible device at least a portion of the generally molten quantity of silicon while retaining within the crucible device the generally solidified quantity of silicon. Controlling the directional solidification of the generally solidified quantity of silicon, while removing the more contaminated molten silicon, results in a silicon ingot possessing a generally higher grade of silicon than the low-grade silicon feedstock.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: June 7, 2011
    Assignee: Calisolar, Inc.
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Patent number: 7887633
    Abstract: Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. Common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, mainly increased material strength. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells. A silicon material with a germanium concentration in the range (50-200) ppmw demonstrates an increased material strength, where best practical ranges depend on the material quality generated.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 15, 2011
    Assignee: Calisolar, Inc.
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Anis Jouini, Dieter Linke, Martin Kaes, Jean Patrice Rakotoniaina, Kamel Ounadjela
  • Patent number: 7651566
    Abstract: Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides a predominantly p-type semiconductor for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of aluminum or/and gallium. The process further melts the silicon feedstock together with a predetermined amount of aluminum or/and gallium to form a molten silicon solution from which to perform directional solidification and, by virtue of adding aluminum or/and gallium, maintains the homogeneity the resistivity of the silicon ingot throughout the silicon ingot. In the case of feedstock silicon leading to low resistivity in respective ingots, typically below 0.4 ?cm, a balanced amount of phosphorus can be optionally added to aluminum or/and gallium.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: January 26, 2010
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Publication number: 20090308455
    Abstract: Techniques for the formation of silicon ingots and crystals using silicon feedstock of various grades are described. Common feature is adding a predetermined amount of germanium to the melt and performing a crystallization to incorporate germanium into the silicon lattice of respective crystalline silicon materials. Such incorporated germanium results in improvements of respective silicon material characteristics, mainly increased material strength. This leads to positive effects at applying such materials in solar cell manufacturing and at making modules from those solar cells. A silicon material with a germanium concentration in the range (50-200) ppmw demonstrates an increased material strength, where best practical ranges depend on the material quality generated.
    Type: Application
    Filed: June 16, 2008
    Publication date: December 17, 2009
    Applicant: CALISOLAR, INC.
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Anis Jouini, Dieter Linke, Martin Kaes, Jean Patrice Rakotoniaina, Kamel Ounadjela
  • Publication number: 20090026423
    Abstract: Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides a predominantly p-type semiconductor for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of aluminum or/and gallium. The process further melts the silicon feedstock together with a predetermined amount of aluminum or/and gallium to form a molten silicon solution from which to perform directional solidification and, by virtue of adding aluminum or/and gallium, maintains the homogeneity the resistivity of the silicon ingot throughout the silicon ingot. In the case of feedstock silicon leading to low resistivity in respective ingots, typically below 0.4? cm, a balanced amount of phosphorus can be optionally added to aluminum or/and gallium.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 29, 2009
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Publication number: 20090028773
    Abstract: Techniques for the formation of a silicon ingot using a low-grade silicon feedstock include forming within a crucible device a molten silicon from a low-grade silicon feedstock and performing a directional solidification of the molten silicon to form a silicon ingot within the crucible device. The directional solidification forms a generally solidified quantity of silicon and a generally molten quantity of silicon. The method and system include removing from the crucible device at least a portion of the generally molten quantity of silicon while retaining within the crucible device the generally solidified quantity of silicon. Controlling the directional solidification of the generally solidified quantity of silicon, while removing the more contaminated molten silicon, results in a silicon ingot possessing a generally higher grade of silicon than the low-grade silicon feedstock.
    Type: Application
    Filed: July 26, 2007
    Publication date: January 29, 2009
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Publication number: 20080257254
    Abstract: Techniques for the formation of a large grain, multi-crystalline semiconductor ingot and include forming a silicon melt in a crucible, the crucible capable of locally controlling thermal gradients within the silicon melt. The local control of thermal gradients preferentially forms silicon crystals in predetermined regions within the silicon melt by locally reducing temperatures is the predetermined regions. The method and system control the rate at which the silicon crystals form using local control of thermal gradients for inducing the silicon crystals to obtain preferentially maximal sizes and, thereby, reducing the number of grains for a given volume. The process continues the thermal gradient control and the rate control step to form a multicrystalline silicon ingot having reduced numbers of grains for a given volume of the silicon ingot.
    Type: Application
    Filed: April 17, 2007
    Publication date: October 23, 2008
    Inventors: Dieter Linke, Matthias Heuer, Fritz Kirscht, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Publication number: 20080197454
    Abstract: Techniques are here disclosed for a solar cell pre-processing. The method and system remove impurities from low-grade crystalline semiconductor wafers and include forming a low-grade semiconductor wafer having a substrate having high impurity content. The process and system damage at least one surface of the semiconductor wafer either in the semiconductor wafer forming step or in a separate step to form a region on the surface that includes a plurality of gettering centers. The gettering centers attract impurities from the substrate during subsequent processing. The subsequent processes include diffusing impurities from the substrate using a phosphorus gettering process that includes impregnating the surface with a phosphorus material for facilitating the formation of impurity clusters associated with the gettering centers.
    Type: Application
    Filed: February 16, 2007
    Publication date: August 21, 2008
    Applicant: CaliSolar, Inc.
    Inventors: Jean Patrice Rakotoniana, Matthias Heuer, Fritz Kirscht, Dieter Linke, Kamel Ounadjela
  • Publication number: 20080178793
    Abstract: Techniques for the formation of a higher purity semiconductor ingot using a low purity semiconductor feedstock include associating within a crucible a low-grade silicon feedstock, which crucible forms a process environment of said molten silicon. The process associates with the low-grade silicon feedstock, a quantity of the at least one metal and includes forming within the crucible a molten solution (e.g., a binary or ternary solution) of molten silicon and the metal at a temperature below the melting temperature of said low-grade silicon feedstock. A silicon seed crystal associates with the molten solution within the crucible for inducing directional silicon crystallization. The process further forms a silicon ingot from a portion of the molten solution in association with the silicon seed. The silicon ingot includes at least one silicon crystalline formation grown in the induced directional silicon crystallization process.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Matthias Heuer, Fritz Kirscht, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Publication number: 20080157241
    Abstract: Techniques are here disclosed for a solar cell pre-processing method and system for annealing and gettering a solar cell semiconductor wafer having an undesirably high dispersion of transition metals, impurities and other defects. The process forms a surface contaminant layer on the solar cell semiconductor (e.g., silicon) wafer. A surface of the semiconductor wafer receives and holds impurities, as does the surface contaminant layer. The lower-quality semiconductor wafer includes dispersed defects that in an annealing process getter from the semiconductor bulk to form impurity cluster toward the surface contaminant layer. The impurity clusters form within the surface contaminant layer while increasing the purity level in wafer regions from which the dispersed defects gettered. Cooling follows annealing for retaining the impurity clusters and, thereby, maintaining the increased purity level of the semiconductor wafer in regions from which the impurities gettered.
    Type: Application
    Filed: December 30, 2006
    Publication date: July 3, 2008
    Inventors: Fritz Kirscht, Kamel Ounadjela, Jean Patrice Rakotoniana, Dieter Linke