Patents by Inventor Dieter Mundschin

Dieter Mundschin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11378431
    Abstract: A mass flow measuring sensor includes: an oscillatable measuring tube bent in a tube plane; an oscillation exciter for exciting bending oscillations in a bending oscillation use-mode; two oscillation sensors for registering oscillations; a support system; and a measuring sensor housing; wherein the support system has support system oscillation modes, including elastic deformations of the support plate; wherein the support plate is cut to form a number of spirally shaped spring securements, via which the support plate is secured to the measuring sensor housing with oscillation degrees of freedom, whose eigenfrequencies are lower than a use-mode eigenfrequency of the bending oscillation use-mode, wherein the use-mode eigenfrequency is lower than the eigenfrequencies of the support system oscillation modes, wherein a calibration factor describes a proportionality between a mass flow through the measuring tube and a phase difference between oscillations of the measuring tube oscillating in the bending oscillation
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: July 5, 2022
    Assignee: ENDRESS+HAUSER FLOWTEC AG
    Inventors: Christof Huber, Benjamin Schwenter, Dieter Mundschin, Christian Schütze
  • Patent number: 10801870
    Abstract: A mass flow sensor includes: a vibratory measurement tube bent in a tube plane; a vibration exciter for exciting bending vibrations in a bending vibration use-mode; two vibration sensors for sensing vibrations; a support system having a support plate, bearing bodies on the inlet and sides; and a sensor housing, wherein: the support system has support system vibration modes which include elastic deformations of the support plate; the measurement tube is connected fixedly to the support plate by the bearing body on the inlet side and by the bearing body on the outlet side; and the support plate has a number of spring-loaded bearings exposed through cut-outs in the support plate by which the support plate is mounted on the sensor housing with degrees of vibrational freedom, the natural frequencies of which are lower than a use-mode natural frequency of the bending vibration use-mode.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 13, 2020
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Christof Huber, Christian Schütze, Dieter Mundschin, Benjamin Schwenter, Severin Ramseyer, Marc Werner
  • Publication number: 20200166397
    Abstract: A mass flow measuring sensor includes: an oscillatable measuring tube bent in a tube plane; an oscillation exciter for exciting bending oscillations in a bending oscillation use-mode; two oscillation sensors for registering oscillations; a support system; and a measuring sensor housing; wherein the support system has support system oscillation modes, including elastic deformations of the support plate; wherein the support plate is cut to form a number of spirally shaped spring securements, via which the support plate is secured to the measuring sensor housing with oscillation degrees of freedom, whose eigenfrequencies are lower than a use-mode eigenfrequency of the bending oscillation use-mode, wherein the use-mode eigenfrequency is lower than the eigenfrequencies of the support system oscillation modes, wherein a calibration factor describes a proportionality between a mass flow through the measuring tube and a phase difference between oscillations of the measuring tube oscillating in the bending oscillation
    Type: Application
    Filed: May 8, 2018
    Publication date: May 28, 2020
    Inventors: Christof Huber, Benjamin Schwenter, Dieter Mundschin, Christian Schütze
  • Publication number: 20200124453
    Abstract: A mass flow sensor includes: a vibratory measurement tube bent in a tube plane; a vibration exciter for exciting bending vibrations in a bending vibration use-mode; two vibration sensors for sensing vibrations; a support system having a support plate, bearing bodies on the inlet and sides; and a sensor housing, wherein: the support system has support system vibration modes which include elastic deformations of the support plate; the measurement tube is connected fixedly to the support plate by the bearing body on the inlet side and by the bearing body on the outlet side; and the support plate has a number of spring-loaded bearings exposed through cut-outs in the support plate by which the support plate is mounted on the sensor housing with degrees of vibrational freedom, the natural frequencies of which are lower than a use-mode natural frequency of the bending vibration use-mode.
    Type: Application
    Filed: May 8, 2018
    Publication date: April 23, 2020
    Inventors: Christof Huber, Christian Schütze, Dieter Mundschin, Benjamin Schwenter, Severin Ramseyer, Marc Werner
  • Patent number: 8863589
    Abstract: A measuring transducer comprises a transducer housing, of which an inlet-side housing end is formed by means of an inlet-side flow divider having eight, mutually spaced flow openings and an outlet-side housing end is formed by means of an outlet-side flow divider having eight, mutually spaced flow openings as well as a tube arrangement with eight bent measuring tubes for the conveying flowing medium, which, forming flow paths connected for parallel flow, are connected to the flow dividers, wherein each of the eight measuring tubes in each case opens with an inlet-side measuring tube end into one of the flow openings of the flow divider, and in each case opens with an outlet-side measuring tube end into one of the flow openings of the flow divider. An electro-mechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the measuring tubes.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: October 21, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Peter Tschabold, Dieter Mundschin, Christian Schutze, Martin Anklin
  • Patent number: 8555730
    Abstract: A measuring transducer of vibration type, especially a Coriolis mass flow meter, having a housing and a mass flow tube, wherein the mass flow tube is formed into a helix having a first loop and a second loop; wherein the mass flow tube has a securement element which affixes a peripheral point of the first loop relative to a neighboring peripheral point of the second loop; and wherein the mass flow tube has an oscillation exciter on a side lying opposite the securement element along the mass flow tube. The mass flow tube has provided between the oscillation exciter and the securement element at least one add-on part acting as a canceling mass.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Wolfgang Drahm, Gerhard Eckert, Dieter Mundschin
  • Publication number: 20120279317
    Abstract: A measuring transducer comprises a transducer housing, of which an inlet-side housing end is formed by means of an inlet-side flow divider having eight, mutually spaced flow openings and an outlet-side housing end is formed by means of an outlet-side flow divider having eight, mutually spaced flow openings as well as a tube arrangement with eight bent measuring tubes for the conveying flowing medium, which, forming flow paths connected for parallel flow, are connected to the flow dividers, wherein each of the eight measuring tubes in each case opens with an inlet-side measuring tube end into one of the flow openings of the flow divider, and in each case opens with an outlet-side measuring tube end into one of the flow openings of the flow divider. An electro-mechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the measuring tubes.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Peter Tschabold, Dieter Mundschin, Christian Schütze, Martin Anklin
  • Patent number: 8201460
    Abstract: A magnet assembly includes: a magnetic field delivering, especially rod-shaped, permanent magnet; a retaining assembly fixedly connected with the permanent magnet and having a retaining head facing the permanent magnet and serving for holding the permanent magnet, and a retaining bolt affixed to the retaining head; and a magnet cup having a cup floor and a cup wall extending from the cup floor. The retaining head of the retaining assembly is at least partially accommodated in a passageway provided in the cup floor, so that an outer contact surface of the retaining head and an inner contact surface of the passageway contact one another to form a force-based interlocking between magnet cup and retaining assembly. The magnet assembly is, especially, provided for application as an oscillation transducer and/or for use in a measuring transducer of vibration type.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: June 19, 2012
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Gerhard Eckert, Dieter Mundschin
  • Patent number: 7992452
    Abstract: A measuring transducer of vibration type for registering, on the basis of the Coriolis principle, at least one measured variable of a medium flowing through a pipeline. The measuring transducer includes: a measuring tube, which is connectable with the pipeline via an inlet and an outlet, wherein the measuring tube includes a first measuring tube arc and a second measuring tube arc; an oscillation exciter for exciting oscillations of the measuring tube arcs; at least one oscillation sensor for registering resulting oscillations of the measuring tube arcs; and a transducer housing surrounding the measuring tube arcs. The measuring tube arcs are elastically coupled to the transducer housing. In this way, a robust and reliable measuring operation is guaranteed, which is little influenced by oscillatory in-couplings.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: August 9, 2011
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Martin Anklin-Imhof, Gerhard Eckert, Dieter Mundschin
  • Publication number: 20110094312
    Abstract: A measuring transducer of vibration type, especially a Coriolis mass flow meter, having a housing and a mass flow tube, wherein the mass flow tube is formed into a helix having a first loop and a second loop; wherein the mass flow tube has a securement element which affixes a peripheral point of the first loop relative to a neighboring peripheral point of the second loop; and wherein the mass flow tube has an oscillation exciter on a side lying opposite the securement element along the mass flow tube. The mass flow tube has provided between the oscillation exciter and the securement element at least one add-on part acting as a canceling mass.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Wolfgang Drahm, Gerhard Eckert, Dieter Mundschin
  • Publication number: 20100132480
    Abstract: A magnet assembly includes: a magnetic field delivering, especially rod-shaped, permanent magnet; a retaining assembly fixedly connected with the permanent magnet and having a retaining head facing the permanent magnet and serving for holding the permanent magnet, and a retaining bolt affixed to the retaining head; and a magnet cup having a cup floor and a cup wall extending from the cup floor. The retaining head of the retaining assembly is at least partially accommodated in a passageway provided in the cup floor, so that an outer contact surface of the retaining head and an inner contact surface of the passageway contact one another to form a force-based interlocking between magnet cup and retaining assembly. The magnet assembly is, especially, provided for application as an oscillation transducer and/or for use in a measuring transducer of vibration type.
    Type: Application
    Filed: November 23, 2009
    Publication date: June 3, 2010
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Gerhard Eckert, Dieter Mundschin
  • Publication number: 20100037707
    Abstract: A measuring transducer of vibration type for registering, on the basis of the Coriolis principle, at least one measured variable of a medium flowing through a pipeline. The measuring transducer includes: a measuring tube, which is connectable with the pipeline via an inlet and an outlet, wherein the measuring tube includes a first measuring tube arc and a second measuring tube arc; an oscillation exciter for exciting oscillations of the measuring tube arcs; at least one oscillation sensor for registering resulting oscillations of the measuring tube arcs; and a transducer housing surrounding the measuring tube arcs. The measuring tube arcs are elastically coupled to the transducer housing. In this way, a robust and reliable measuring operation is guaranteed, which is little influenced by oscillatory in-couplings.
    Type: Application
    Filed: July 24, 2009
    Publication date: February 18, 2010
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Martin Anklin-Imhof, Gerhard Eckert, Dieter Mundschin
  • Patent number: 7360451
    Abstract: A measuring transducer includes a transducer housing, as well as an internal part arranged in the transducer housing. The internal part includes at least one curved measuring tube vibrating, at least at times, during operation and serving for conveying the medium, as well as a counteroscillator affixed to the measuring tube on the inlet-side, accompanied by formation of a coupling zone, and to the measuring tube on the outlet-side, accompanied by the formation of a coupling zone. The internal part is held oscillatably in the transducer housing, at least by means of two connecting tube pieces, via which the measuring tube communicates during operation with the pipeline and which are so oriented with respect to one another, as well as with respect to an imaginary longitudinal axis of the measuring transducer, that the internal part can move during operation in the manner of a pendulum about the longitudinal axis.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: April 22, 2008
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Christian Schütze, Martin Anklin-Imhof, Christof Huber, Dieter Mundschin, Michael Lambrigger
  • Patent number: 7325462
    Abstract: The measuring transducer includes a transducer housing, as well as an internal part arranged in the transducer housing. The internal part includes at least one curved measuring tube vibrating, at least at times, during operation and serving for conveying the medium, as well as a counteroscillator affixed to the measuring tube on the inlet-side, accompanied by formation of a coupling zone, and to the measuring tube on the outlet-side, accompanied by the formation of a coupling zone. The internal part is held oscillatably in the transducer housing, at least by means of two connecting tube pieces, via which the measuring tube communicates during operation with the pipeline and which are so oriented with respect to one another, as well as with respect to an imaginary longitudinal axis of the measuring transducer, that the internal part can move during operation in the manner of a pendulum about the longitudinal axis.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: February 5, 2008
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Christian Schütze, Martin Anklin-Imhof, Christof Huber, Dieter Mundschin, Michael Lambrigger
  • Publication number: 20070151370
    Abstract: The measuring transducer includes a transducer housing, as well as an internal part arranged in the transducer housing. The internal part includes at least one curved measuring tube vibrating, at least at times, during operation and serving for conveying the medium, as well as a counteroscillator affixed to the measuring tube on the inlet-side, accompanied by formation of a coupling zone, and to the measuring tube on the outlet-side, accompanied by the formation of a coupling zone. The internal part is held oscillatably in the transducer housing, at least by means of two connecting tube pieces, via which the measuring tube communicates during operation with the pipeline and which are so oriented with respect to one another, as well as with respect to an imaginary longitudinal axis of the measuring transducer, that the internal part can move during operation in the manner of a pendulum about the longitudinal axis.
    Type: Application
    Filed: December 8, 2006
    Publication date: July 5, 2007
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Christian Schuetze, Martin Anklin-Imhof, Christof Huber, Dieter Mundschin, Michael Lambrigger
  • Publication number: 20070151371
    Abstract: A measuring transducer includes a transducer housing, as well as an internal part arranged in the transducer housing. The internal part includes at least one curved measuring tube vibrating, at least at times, during operation and serving for conveying the medium, as well as a counteroscillator affixed to the measuring tube on the inlet-side, accompanied by formation of a coupling zone, and to the measuring tube on the outlet-side, accompanied by the formation of a coupling zone. The internal part is held oscillatably in the transducer housing, at least by means of two connecting tube pieces, via which the measuring tube communicates during operation with the pipeline and which are so oriented with respect to one another, as well as with respect to an imaginary longitudinal axis of the measuring transducer, that the internal part can move during operation in the manner of a pendulum about the longitudinal axis.
    Type: Application
    Filed: December 11, 2006
    Publication date: July 5, 2007
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Christian Schutze, Martin Anklin-Imhof, Christof Huber, Dieter Mundschin, Michael Lambrigger