Patents by Inventor Dimitar Gargov

Dimitar Gargov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230037278
    Abstract: A metal detector detects when a target that is a desirable metal object is located within a medium. A signal is transmitted into the medium. A response signal is received from the medium. The response signal includes a secondary medium response signal from the medium and includes a secondary target response signal from the target when the target is located within the medium. The response signal is amplified to produce an amplified signal. Compensation circuitry perform transmit coil transfer function compensation on the amplified signal to produce a compensated signal. A notch module removes a resistive component of the secondary medium response signal from the compensated signal.
    Type: Application
    Filed: February 24, 2021
    Publication date: February 2, 2023
    Inventor: Dimitar Gargov
  • Publication number: 20220268961
    Abstract: A metal detector detects when a target that is a desirable metal object is located within a medium. A signal is transmitted into the medium. A response signal is received from the medium. The response signal includes a secondary medium response signal from the medium and includes a secondary target response signal from the target when the target is located within the medium. The response signal is amplified to produce an amplified signal. Compensation circuitry perform transmit coil transfer function compensation on the amplified signal to produce a compensated signal. A notch module removes a resistive component of the secondary medium response signal from the compensated signal.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 25, 2022
    Inventor: Dimitar Gargov
  • Patent number: 10969512
    Abstract: A metal detector detects when a target that is a desirable metal object is located within a medium. A signal is transmitted into the medium. A response signal is received from the medium. The response signal includes a secondary medium response signal from the medium and includes a secondary target response signal from the target when the target is located within the medium. The response signal is amplified to produce an amplified signal. Compensation circuitry perform transmit coil transfer function compensation on the amplified signal to produce a compensated signal. A notch module removes a resistive component of the secondary medium response signal from the compensated signal. A signal vector resistive component demodulator produces a vector resistive component output signal from output of the notch module. A vector reactive component demodulator produces a vector reactive component output signal from the output of the notch module.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: April 6, 2021
    Assignee: Tarsacci LLC
    Inventor: Dimitar Gargov
  • Patent number: 10809410
    Abstract: In accordance with aspects of the current invention, a method of determining a location of a utility line includes driving one or more transmitters with a continuous wave signal; either adjusting for effects of direct coupling between the transmitters and one or more sensors mounted on the same rigid platform or different platforms or maintaining sufficient separation between a transmitter platform and a sensor platform to minimize such effects; and deriving a position of the line relative to the sensors from the measurements.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 20, 2020
    Assignee: OPTIMAL RANGING, INC.
    Inventors: Thorkell Gudmundsson, James W. Waite, Dimitar Gargov
  • Patent number: 10725191
    Abstract: A locating system is presented. In some embodiments, the locating system includes a first platform, the first platform including a transmitter capable of inducing a current in a line; a second platform, the second platform including a receiver capable of detecting the current in the line; and a processor coupled to the first platform and the second platform, the processor directing the first platform and the second platform to control their motion over the line and collecting location data of the line.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: July 28, 2020
    Assignee: OPTIMAL RANGING, INC.
    Inventors: Thorkell Gudmundsson, James W. Waite, Dimitar Gargov
  • Publication number: 20190353818
    Abstract: A metal detector detects when a target that is a desirable metal object is located within a medium. A signal is transmitted into the medium. A response signal is received from the medium. The response signal includes a secondary medium response signal from the medium and includes a secondary target response signal from the target when the target is located within the medium. The response signal is amplified to produce an amplified signal. Compensation circuitry perform transmit coil transfer function compensation on the amplified signal to produce a compensated signal. A notch module removes a resistive component of the secondary medium response signal from the compensated signal. A signal vector resistive component demodulator produces a vector resistive component output signal from output of the notch module. A vector reactive component demodulator produces a vector reactive component output signal from the output of the notch module.
    Type: Application
    Filed: May 9, 2019
    Publication date: November 21, 2019
    Inventor: Dimitar Gargov
  • Publication number: 20180172867
    Abstract: A locating system is presented. In some embodiments, the locating system includes a first platform, the first platform including a transmitter capable of inducing a current in a line; a second platform, the second platform including a receiver capable of detecting the current in the line; and a processor coupled to the first platform and the second platform, the processor directing the first platform and the second platform to control their motion over the line and collecting location data of the line.
    Type: Application
    Filed: February 13, 2018
    Publication date: June 21, 2018
    Inventors: Thorkell Gudmundsson, James W. Waite, Dimitar Gargov
  • Publication number: 20170357023
    Abstract: In accordance with aspects of the current invention, a method of determining a location of a utility line includes driving one or more transmitters with a continuous wave signal; either adjusting for effects of direct coupling between the transmitters and one or more sensors mounted on the same rigid platform or different platforms or maintaining sufficient separation between a transmitter platform and a sensor platform to minimize such effects; and deriving a position of the line relative to the sensors from the measurements.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 14, 2017
    Inventors: Thorkell Gudmundsson, James W. Waite, Dimitar Gargov
  • Patent number: 9285222
    Abstract: A system and method for providing autonomous navigation for an Autonomous Vehicle such as an Unmanned Air Vehicle (UAV) or an Autonomous Underwater Vehicle (AUV) in the vicinity of power lines or other signal carrying lines or underwater cable is presented. Autonomous navigation is achieved by measuring the magnitude and phase of the electromagnetic field at an unknown location within a space under excitation by a set of power cables of the power line with one or more orthogonal electromagnetic sensors formed on the AV; and estimating parameters related to a position and orientation of the AV, and load parameters of each cable based on the residual error between the measured set of complex electromagnetic field values corresponding to a combined model of the set of power cables.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: March 15, 2016
    Assignee: OPTIMAL RANGING, INC.
    Inventors: James W. Waite, Thorkell Gudmundsson, Dimitar Gargov
  • Patent number: 9158024
    Abstract: A system for determining the position of an underground sonde transmitter is disclosed. In some embodiments, the system measures a set of complex electromagnetic field magnitude and phase strengths at one or more positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, models a set of expected complex electromagnetic strengths of a hypothetical sonde at the positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimates parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths. A final estimated parameter set is determined after the residual error has converged to a minimum tolerance to indicate the sonde transmitter position.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: October 13, 2015
    Assignee: Metrotech Corporation Inc.
    Inventors: Johan Överby, James W. Waite, Dimitar Gargov, Kun Li
  • Patent number: 9151822
    Abstract: A method for determining the location and orientation of a transmitter object by measuring a set of complex electromagnetic field magnitude and phase strengths within a space using one or more receivers is provided. The method includes modeling a set of expected complex electromagnetic strengths to estimated position and orientation of the transmitter object. And estimating parameters related to the transmitter object position based on the residual error between the measured set of complex electromagnetic field values and a set of expected electromagnetic field values. Further embodiments include a method as above including a plurality of receivers with known positions within a limited space including the transmitter object. A sensor network including a plurality of receivers to perform the above method is also provided. The receivers may communicate using a wireless channel.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: October 6, 2015
    Assignee: Optimal Ranging, Inc.
    Inventors: James W. Waite, Thorkell Gudmundsson, Dimitar Gargov
  • Publication number: 20150226559
    Abstract: A system and method for providing autonomous navigation for an Autonomous Vehicle such as an Unmanned Air Vehicle (UAV) or an Autonomous Underwater Vehicle (AUV) in the vicinity of power lines or other signal carrying lines or underwater cable is presented. Autonomous navigation is achieved by measuring the magnitude and phase of the electromagnetic field at an unknown location within a space under excitation by a set of power cables of the power line with one or more orthogonal electromagnetic sensors formed on the AV; and estimating parameters related to a position and orientation of the AV, and load parameters of each cable based on the residual error between the measured set of complex electromagnetic field values corresponding to a combined model of the set of power cables.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: James W. Waite, Thorkell Gudmundsson, Dimitar Gargov
  • Patent number: 9037314
    Abstract: A system and method for providing autonomous navigation for an Unmanned Air Vehicle (UAV) in the vicinity of power lines is presented. Autonomous navigation is achieved by measuring the magnitude and phase of the electromagnetic field at an unknown location within a space under excitation by a set of power cables of the power line with one or more orthogonal electromagnetic sensors formed on the UAV; modeling a set of expected complex electromagnetic strengths of the set of power cables at the currently estimated position and orientation of the UAV based on a model of the set of power cables; and estimating parameters related to a position and orientation of the UAV, and load parameters of each cable based on the residual error between the measured set of complex electromagnetic field values and the set of expected electromagnetic field values corresponding to a combined model of the set of power cables.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: May 19, 2015
    Assignee: Optimal Ranging, Inc.
    Inventors: James W. Waite, Thorkell Gudmundsson, Dimitar Gargov
  • Publication number: 20120232800
    Abstract: A method for determining the location of an underground sonde transmitter is disclosed. In some embodiments, the method includes measuring a set of complex electromagnetic field magnitude and phase strengths at one or more of positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, modeling a set of expected complex electromagnetic strengths of a hypothetical sonde at the one or more of positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimating parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths, wherein a final estimated parameter set is determined after the residual error has converged to a minimum tolerance.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 13, 2012
    Applicant: Metrotech Corporation Inc.
    Inventors: JOHAN OVERBY, James W. Waite, Dimitar Gargov, Kun Li
  • Patent number: 8188745
    Abstract: A method for determining the location of an underground sonde transmitter is disclosed. In some embodiments, the method includes measuring a set of complex electromagnetic field magnitude and phase strengths at one or more of positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, modeling a set of expected complex electromagnetic strengths of a hypothetical sonde at the one or more of positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimating parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths, wherein a final estimated parameter set is determined after the residual error has converged to a minimum tolerance.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 29, 2012
    Assignee: Metrotech Corporation Inc.
    Inventors: Johan Överby, James W. Waite, Dimitar Gargov, Kun Li
  • Publication number: 20120016538
    Abstract: A system and method for providing autonomous navigation for an Unmanned Air Vehicle (UAV) in the vicinity of power lines is presented. Autonomous navigation is achieved by measuring the magnitude and phase of the electromagnetic field at an unknown location within a space under excitation by a set of power cables of the power line with one or more orthogonal electromagnetic sensors formed on the UAV; modeling a set of expected complex electromagnetic strengths of the set of power cables at the currently estimated position and orientation of the UAV based on a model of the set of power cables; and estimating parameters related to a position and orientation of the UAV, and load parameters of each cable based on the residual error between the measured set of complex electromagnetic field values and the set of expected electromagnetic field values corresponding to a combined model of the set of power cables.
    Type: Application
    Filed: June 20, 2011
    Publication date: January 19, 2012
    Inventors: James W. Waite, Thorkell Gudmundsson, Dimitar Gargov
  • Publication number: 20110156957
    Abstract: A method for determining the location and orientation of a transmitter object by measuring a set of complex electromagnetic field magnitude and phase strengths within a space using one or more receivers is provided. The method includes modeling a set of expected complex electromagnetic strengths to estimated position and orientation of the transmitter object. And estimating parameters related to the transmitter object position based on the residual error between the measured set of complex electromagnetic field values and a set of expected electromagnetic field values. Further embodiments include a method as above including a plurality of receivers with known positions within a limited space including the transmitter object. A sensor network including a plurality of receivers to perform the above method is also provided. The receivers may communicate using a wireless channel.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 30, 2011
    Inventors: James W. WAITE, Thorkell Gudmundsson, Dimitar Gargov
  • Publication number: 20100141261
    Abstract: A method for determining the location of an underground sonde transmitter is disclosed. In some embodiments, the method includes measuring a set of complex electromagnetic field magnitude and phase strengths at one or more of positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, modeling a set of expected complex electromagnetic strengths of a hypothetical sonde at the one or more of positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimating parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths, wherein a final estimated parameter set is determined after the residual error has converged to a minimum tolerance.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Inventors: Johan Overby, James W. Waite, Dimitar Gargov, Kun Li