Patents by Inventor Dimitar Velikov Dimitrov

Dimitar Velikov Dimitrov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8711526
    Abstract: A magnetic element is generally provided that can be implemented as a transducing head. Various embodiments may configure a magnetic stack to be separated from a side shield lamination on an air bearing surface (ABS). The side shield lamination can be constructed to have a plurality of magnetic and non-magnetic layers each coupled to a top shield.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 29, 2014
    Assignee: Seagate Technology LLC
    Inventors: Levent Colak, Mark William Covington, Dimitar Velikov Dimitrov, Mark Thomas Kief, Anthony Mack, Dian Song
  • Patent number: 8705212
    Abstract: An apparatus and associated method may be used to produce a magnetic element capable of detecting changes in magnetic states. Various embodiments of the present invention are generally directed to a magnetically responsive lamination of layers with a first portion and a laterally adjacent second portion. The second portion having a predetermined roughness between at least two layers capable of producing orange-peel coupling.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 22, 2014
    Assignee: Seagate Technology LLC
    Inventors: Jason Bryce Gadbois, Michael Christopher Kautzky, Mark William Covington, Dian Song, Dimitar Velikov Dimitrov, Qing He, Wei Tian, Thomas Boonstra, Sunita Gangopadhyay
  • Patent number: 8659855
    Abstract: A magnetoresistive read sensor with improved sensitivity and stability is described. The sensor is a trilayer stack positioned between two electrodes. The trilayer stack has two free layers separated by a nonmagnetic layer and a biasing magnet positioned at the rear of the stack and separated from the air bearing surface. Current in the sensor is confined to regions close to the air bearing surface by an insulator layer to enhance reader sensitivity.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: February 25, 2014
    Assignee: Seagate Technology LLC
    Inventors: Dimitar Velikov Dimitrov, Dion Song, Mark William Covington, James Wessel
  • Publication number: 20140004385
    Abstract: A magnetic element is generally provided that can be implemented as a transducing head. Various embodiments may configure a magnetic stack to be separated from a side shield lamination on an air bearing surface (ABS). The side shield lamination can be constructed to have a plurality of magnetic and non-magnetic layers each coupled to a top shield.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Levent Colak, Mark William Covington, Dimitar Velikov Dimitrov, Mark Thomas Kief, Anthony Mack, Dian Song
  • Publication number: 20140001585
    Abstract: Various embodiments may configure a magnetic stack with a magnetically free layer, a reference structure, and a biasing layer. The magnetically free layer and reference structure can each be respectively configured with first and second magnetizations aligned along a first plane while the biasing layer has a third magnetization aligned along a second plane, substantially perpendicular to the first plane.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Dimitar Velikov Dimitrov, Wonjoon Jung
  • Publication number: 20140002930
    Abstract: A magnetic element is generally provided that can be implemented as a transducing head. Various embodiments may configure a magnetic stack having a magnetically free layer with a predetermined magnetization. A side shield lamination can be separated from the magnetic stack on an air hearing surface (ABS) and biased to a bias magnetization that opposes the predetermined magnetization.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Dimitar Velikov Dimitrov, Dian Song, Mark William Covington
  • Publication number: 20140004386
    Abstract: An apparatus can be generally directed to a magnetic stack having a magnetically free layer positioned on an air bearing surface (ABS). The magnetically free layer can be biased to a predetermined magnetization in various embodiments by a biasing structure that is coupled with the magnetically free layer and positioned distal the ABS.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Mark William Covington, Dimitar Velikov Dimitrov, Dian Song
  • Patent number: 8553369
    Abstract: A magnetic element capable of detecting changes in magnetic states, such as for use as a read sensor in a data transducing head or as a solid-state non-volatile memory element. In accordance with various embodiments, the magnetic element includes a magnetically responsive stack or lamination with a first areal extent. The stack includes a spacer layer positioned between first and second ferromagnetic free layers. At least one antiferromagnetic (AFM) tab is connected to the first free layer on a surface thereof opposite the spacer layer, the AFM tab having a second areal extent that is less than the first areal extent.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 8, 2013
    Assignee: Seagate Technology LLC
    Inventors: Dion Song, Mark William Covington, Qing He, Dimitar Velikov Dimitrov, Wei Tian, Wonjoon Jung, Sunita Bhardwaj Gangopadhyay
  • Patent number: 8519376
    Abstract: Nonvolatile resistive memory devices are disclosed. In some embodiments, the memory devices comprise multilayer structures including electrodes, one or more resistive storage layers, and separation layers. The separation layers insulate the resistive storage layers to prevent charge leakage from the storage layers and allow for the use of thin resistive storage layers. In some embodiments, the nonvolatile resistive memory device includes a metallic multilayer comprising two metallic layers about an interlayer. A dopant at an interface of the interlayer and metallic layers can provide a switchable electric field within the multilayer.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 27, 2013
    Assignee: Seagate Technology LLC
    Inventors: Dimitar Velikov Dimitrov, Insik Jin, Haiwen Xi
  • Patent number: 8467154
    Abstract: Disclosed herein are magnetic sensors that include: a sensor stack having a front and an opposing back, wherein the front of the sensor stack defines an air bearing surface of the magnetic sensor, and the sensor stack includes: a free layer assembly having a second magnetization direction, that is substantially perpendicular to a plane of each layer of the sensor stack; and a stabilizing structure positioned away from the air bearing surface at the back of the sensor stack.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: June 18, 2013
    Assignee: Seagate Technology LLC
    Inventors: Mark William Covington, Dimitar Velikov Dimitrov, Wonjoon Jung, Dion Song
  • Publication number: 20130069642
    Abstract: Various embodiments can have a magnetically responsive stack positioned on an air bearing surface (ABS) and disposed between at least first and second magnetic shields. Each magnetic shield may have a beveled portion distal to the ABS. The magnetically responsive stack can have a cross-track magnetization anisotropy proximal to the ABS.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Victor Boris Sapozhnikov, Dimitar Velikov Dimitrov
  • Publication number: 20130065084
    Abstract: Various embodiments can have a data read stack positioned on an air bearing surface (ABS). The data read stack may be disposed between first and second buffer layers, where at least one of the buffer layers can be configured to provide a predetermined shunt ratio for the data read stack.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Dimitar Velikov Dimitrov, Dian Song, Mark William Covington
  • Publication number: 20130065085
    Abstract: Various embodiments may be constructed with a trilayer stack that is positioned on an air bearing surface (ABS). The trilayer stack can be configured with a stripe height along an axis orthogonal to the ABS and with first and second magnetic free layers that each has an angled uniaxial anisotropy with respect to the ABS.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Dimitar Velikov Dimitrov, Mark William Covington, Wonjoon Jung
  • Patent number: 8395867
    Abstract: A magnetic sensor has at least a free sub-stack, a reference sub-stack and a front shield. The free sub-stack has a magnetization direction substantially perpendicular to the planar orientation of the layer and extends to an air bearing surface. The reference sub-stack has a magnetization direction substantially perpendicular to the magnetization direction of the free sub-stack. The reference sub-stack is recessed from the air bearing surface and a front shield is positioned between the reference sub-stack and the air bearing surface.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: March 12, 2013
    Inventors: Dimitar Velikov Dimitrov, Zheng Gao, Wonjoon Jung, Sharat Batra, Olle Gunnar Heinonen
  • Publication number: 20130050876
    Abstract: Disclosed herein are magnetic sensors that include: a sensor stack having a front and an opposing back, wherein the front of the sensor stack defines an air bearing surface of the magnetic sensor, and the sensor stack includes: a free layer assembly having a second magnetization direction, that is substantially perpendicular to a plane of each layer of the sensor stack; and a stabilizing structure positioned away from the air bearing surface at the back of the sensor stack.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Mark William Covington, Dimitar Velikov Dimitrov, Wonjoon Jung, Dion Song
  • Patent number: 8309945
    Abstract: Programmable metallization memory cells having a planarized silver electrode and methods of forming the same are disclosed. The programmable metallization memory cells include a first metal contact and a second metal contact, an ion conductor solid electrolyte material is between the first metal contact and the second metal contact, and either a silver alloy doping electrode separates the ion conductor solid electrolyte material from the first metal contact or the second metal contact, or a silver doping electrode separates the ion conductor solid electrolyte material from the first metal contact. The silver electrode includes a silver layer and a metal seed layer separating the silver layer from the first metal contact.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: November 13, 2012
    Assignee: Seagate Technology LLC
    Inventors: Wei Tian, Dexin Wang, Venugopalan Vaithyanathan, Yang Dong, Muralikrishnan Balakrishnan, Ivan Petrov Ivanov, Ming Sun, Dimitar Velikov Dimitrov
  • Publication number: 20120268846
    Abstract: An apparatus and associated method may be used to produce a magnetic element capable of detecting changes in magnetic states. Various embodiments of the present invention are generally directed to a magnetically responsive lamination of layers with a first portion and a laterally adjacent second portion. The second portion having a predetermined roughness between at least two layers capable of producing orange-peel coupling.
    Type: Application
    Filed: April 25, 2011
    Publication date: October 25, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Jason Bryce Gadbois, Michael Christopher Kautzky, Mark William Covington, Dian Song, Dimitar Velikov Dimitrov, Qing He, Wei Tian, Thomas Boonstra, Sunita Gangopadhyay
  • Patent number: 8289660
    Abstract: An apparatus includes a magnetoresistive read element, first and second primary shields, and an auxiliary shield. The magnetoresistive read element is located between the first and the second primary shields, and the auxiliary shield is located between the magnetoresistive read element and the first primary shield. In another embodiment, the apparatus includes a plurality of magnets located between a plurality of shields for a magnetoresistive element. The plurality of magnets is optionally offset from the magnetoresistive element.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 16, 2012
    Assignee: Seagate Technology LLC
    Inventors: Dimitar Velikov Dimitrov, Dion Song
  • Patent number: 8288254
    Abstract: Programmable metallization memory cells having a planarized silver electrode and methods of forming the same are disclosed. The programmable metallization memory cells include a first metal contact and a second metal contact, an ion conductor solid electrolyte material is between the first metal contact and the second metal contact, and either a silver alloy doping electrode separates the ion conductor solid electrolyte material from the first metal contact or the second metal contact, or a silver doping electrode separates the ion conductor solid electrolyte material from the first metal contact. The silver electrode includes a silver layer and a metal seed layer separating the silver layer from the first metal contact.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: October 16, 2012
    Assignee: Seagate Technology LLC
    Inventors: Wei Tian, Dexin Wang, Venugopalan Vaithyanathan, Yang Dong, Muralikrishnan Balakrishnan, Ivan Petrov Ivanov, Ming Sun, Dimitar Velikov Dimitrov
  • Publication number: 20120134057
    Abstract: A magnetic element capable of detecting changes in magnetic states, such as for use as a read sensor in a data transducing head or as a solid-state non-volatile memory element. In accordance with various embodiments, the magnetic element includes a magnetically responsive stack or lamination with a first areal extent. The stack includes a spacer layer positioned between first and second ferromagnetic free layers. At least one antiferromagnetic (AFM) tab is connected to the first free layer on a surface thereof opposite the spacer layer, the AFM tab having a second areal extent that is less than the first areal extent.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Dion Song, Mark William Covington, Qing He, Dimitar Velikov Dimitrov, Wei Tian, Wonjoon Jung, Sunita Bhardwaj Gangopadhyay