Patents by Inventor Dimitri Krut

Dimitri Krut has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10164140
    Abstract: Technologies for a micro-concentrator modular array. The micro-concentrator modular array may include two or more micro-concentrator solar modules. One or more of the micro-concentrator solar modules may be removable from the micro-concentrator modular array. Micro-concentrator solar modules may be added to a micro-concentrator modular array. One or more of the micro-concentrator solar modules may be electrically and/or mechanically connected to other micro-concentrator solar modules. To facilitate an electrical connection, a conductive connector may be used to connect an electrical output of one micro-concentrator solar module with an electrical input of another micro-concentrator solar module.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: December 25, 2018
    Assignee: The Boeing Company
    Inventors: Nasser H. Karam, Scott B. Singer, Dimitri Krut
  • Publication number: 20150243822
    Abstract: Technologies for a micro-concentrator modular array. The micro-concentrator modular array may include two or more micro-concentrator solar modules. One or more of the micro-concentrator solar modules may be removable from the micro-concentrator modular array. Micro-concentrator solar modules may be added to a micro-concentrator modular array. One or more of the micro-concentrator solar modules may be electrically and/or mechanically connected to other micro-concentrator solar modules. To facilitate an electrical connection, a conductive connector may be used to connect an electrical output of one micro-concentrator solar module with an electrical input of another micro-concentrator solar module.
    Type: Application
    Filed: November 6, 2014
    Publication date: August 27, 2015
    Inventors: Nasser H. Karam, Scott B. Singer, Dimitri Krut
  • Publication number: 20060048811
    Abstract: Laser power conversion with multiple stacked junctions or subcells are disclosed to produce increased output. Both vertical and horizontal integration are disclosed for flexible, efficient, and cost-effective laser power conversion. One embodiment of a laser power converter includes at least a first or top subcell that receives incident laser light, a second subcell below the first subcell that subsequently receives the laser light, and a tunnel junction between the first and second subcells.
    Type: Application
    Filed: September 9, 2004
    Publication date: March 9, 2006
    Inventors: Dimitri Krut, Rengarajan Sudharsanan, Nassar Karam, Richard King
  • Publication number: 20050110041
    Abstract: A semiconductor device having at least one layer of a group III-V semiconductor material epitaxially deposited on a group III-V nucleation layer adjacent to a germanium substrate. By introducing electrical contacts on one or more layers of the semiconductor device, various optoelectronic and microelectronic circuits may be formed on the semiconductor device having similar quality to conventional group III-V substrates at a substantial cost savings. Alternatively, an active germanium device layer having electrical contacts may be introduced to a portion of the germanium substrate to form an optoelectronic integrated circuit or a dual optoelectronic and microelectronic device on a germanium substrate depending on whether the electrical contacts are coupled with electrical contacts on the germanium substrate and epitaxial layers, thereby increase the functionality of the semiconductor devices.
    Type: Application
    Filed: November 20, 2003
    Publication date: May 26, 2005
    Inventors: Karim Boutros, Nasser Karam, Dimitri Krut, Moran Haddad
  • Patent number: 6787818
    Abstract: A diffused junction semiconductor (12) for detecting light (48) at a predetermined wavelength is provided including a base (30) and an epitaxial structure (32) electrically coupled to the base (30). The epitaxial structure (32) forms a p-n junction (38) in the base (30). The epitaxial structure (32) includes at least one diffusion layer (50) electrically coupled to the base (30). At least one of the diffusion layers (50) contributes impurities in at least a portion of the base (30) to form the p-n junction (38) during growth of the epitaxial structure (32). A method for performing the same is also provided.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: September 7, 2004
    Assignee: The Boeing Company
    Inventors: Charles B. Morrison, Rengarajan Sudharsanan, Moran Haddad, Dimitri Krut, Joseph C. Boisvert, Richard R. King, Nasser H. Karam
  • Publication number: 20030230761
    Abstract: ABSTRACT A diffused junction semiconductor (12) for detecting light (48) at a predetermined wavelength is provided including a base (30) and an epitaxial structure (32) electrically coupled to the base (30). The epitaxial structure (32) forms a p-n junction (38) in the base (30). The epitaxial structure (32) includes at least one diffusion layer (50) electrically coupled to the base (30). At least one of the diffusion layers (50) contributes impurities in at least a portion of the base (30) to form the p-n junction (38) during growth of the epitaxial structure (32). A method for performing the same is also provided.
    Type: Application
    Filed: June 14, 2002
    Publication date: December 18, 2003
    Inventors: Charles B. Morrison, Rengarajan Sudharsanan, Moran Haddad, Dimitri Krut, Joseph C. Boisvert, Richard R. King, Nasser H. Karam
  • Publication number: 20020168809
    Abstract: A semiconductor device having at least one layer of a group III-V semiconductor material epitaxially deposited on a group III-V nucleation layer adjacent to a germanium substrate. By introducing electrical contacts on one or more layers of the semiconductor device, various optoelectronic and microelectronic circuits may be formed on the semiconductor device having similar quality to conventional group III-V substrates at a substantial cost savings. Alternatively, an active germanium device layer having electrical contacts may be introduced to a portion of the germanium substrate to form an optoelectronic integrated circuit or a dual optoelectronic and microelectronic device on a germanium substrate depending on whether the electrical contacts are coupled with electrical contacts on the germanium substrate and epitaxial layers, thereby increase the functionality of the semiconductor devices.
    Type: Application
    Filed: May 8, 2001
    Publication date: November 14, 2002
    Inventors: Karim S. Boutros, Nasser H. Karam, Dimitri Krut, Moran Haddad