Patents by Inventor Dingding Chen

Dingding Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220252759
    Abstract: Improved systematic inversion methodology applied to formation testing data interpretation with spherical, radial and/or cylindrical flow models is disclosed. A method of determining a flow line parameter includes determining a diverse set of flow models and selecting at least one flow model from the diverse set of flow models representative, at least in part, of a formation tester tool, at least one formation, at least one fluid, and at least one flow of the at least one fluid. The method further includes lowering the formation testing tool into the at least one formation to intersect with the formation at least one formation and sealing a probe of the formation tester placed in fluid communication with the at least one formation. The method further includes initiating flow from the at least one formation and utilizing the at least one selected flow model to predict the flow line parameter.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 11, 2022
    Inventors: Dingding Chen, Mark A. Proett, Li Gao, Christopher Michael Jones
  • Publication number: 20220195868
    Abstract: This disclosure presents a process for communications in a borehole containing a fluid or drilling mud, where a conventional mud pulser can be utilized to transmit data to a transducer. The transducer, or a communicatively coupled computing system, can perform pre-processing steps to correct the received data using an average of a moving time window of the received data, and then normalize the corrected data. The corrected data can then be utilized as inputs into a machine learning mud pulse recognition network where the data can be classified and an ideal or clean pulse waveform can be overlaid the corrected data. The overlay and the corrected data can be fed into a conventional decoder or decoded by the disclosed process. The decoded data can then be communicated to another system and used as inputs, such as to a well site controller to enable adjustments to well site operation parameters.
    Type: Application
    Filed: February 7, 2022
    Publication date: June 23, 2022
    Inventors: Dingding Chen, Li Gao, Joni Polili Lie, Paravastu Badrinarayanan, Faisal Farooq Shah, Bipin K. Pillai, Murali Krishna Thottempudi
  • Patent number: 11365627
    Abstract: A method, including disposing a probe of a sensor system in a wellbore to interact with a formation fluid that includes a mud filtrate and a clean fluid that includes one of a formation water, or a formation hydrocarbon fluid including at least one hydrocarbon component. The method includes collecting multiple measurements of a formation fluid from a wellbore, the formation fluid comprising a mud filtrate and a clean fluid, is provided. The clean fluid includes at least one hydrocarbon component, and the method also include identifying a concentration of the mud filtrate and a concentration of the clean fluid in the formation fluid for one of the measurements, and determining at least one hydrocarbon composition and at least one physical property of the clean fluid based on a measurement fingerprint of the hydrocarbon components. A sensor system configured to perform a method as above is also provided.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: June 21, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Christopher Michael Jones, Dingding Chen
  • Patent number: 11366247
    Abstract: A method may include transforming optical responses for a fluid sample to a parameter space of a downhole tool. The optical responses are obtained using a first operational sensor and a second operational sensor of the downhole tool. Fluid models are applied in the parameter space of the downhole tool to the transformed optical responses to obtain density predictions of the fluid sample. The density predictions of the first operational sensor are matched to the density predictions of the second operational sensor based on optical parameters of the fluid models to obtain matched density predictions. A difference between the matched density predictions and measurements obtained from a densitometer is calculated, and a contamination index is estimated based on the difference.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: June 21, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Bin Dai, Jing Shen, Ming Gu
  • Patent number: 11255187
    Abstract: This disclosure presents a process for communications in a borehole containing a fluid or drilling mud, where a conventional mud pulser can be utilized to transmit data to a transducer. The transducer, or a communicatively coupled computing system, can perform pre-processing steps to correct the received data using an average of a moving time window of the received data, and then normalize the corrected data. The corrected data can then be utilized as inputs into a machine learning mud pulse recognition network where the data can be classified and an ideal or clean pulse waveform can be overlaid the corrected data. The overlay and the corrected data can be fed into a conventional decoder or decoded by the disclosed process. The decoded data can then be communicated to another system and used as inputs, such as to a well site controller to enable adjustments to well site operation parameters.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: February 22, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Li Gao, Joni Polili Lie, Paravastu Badrinarayanan, Faisal Farooq Shah, Bipin K. Pillai, Murali Krishna Thottempudi
  • Publication number: 20220003892
    Abstract: Improved systematic inversion methodology applied to formation testing data interpretation with spherical, radial and/or cylindrical flow models is disclosed. A method of determining a parameter of a formation of interest at a desired location comprises directing a formation tester to the desired location in the formation of interest and obtaining data from the desired location in the formation of interest. The obtained data relates to a first parameter at the desired location of the formation of interest. The obtained data is regressed to determine a second parameter at the desired location of the formation of interest. Regressing the obtained data comprises using a method selected from a group consisting of a deterministic approach, a probabilistic approach, and an evolutionary approach.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Dingding Chen, Mark A. Proett, Li Gao, Christopher Michael Jones
  • Publication number: 20210372281
    Abstract: A system to determine a contamination level of a formation fluid, the system including a formation tester tool to be positioned in a borehole, wherein the borehole has a mixture of the formation fluid and a drilling fluid and the formation tester tool includes a sensor to detect time series measurements from a plurality of sensor channels. The system includes a processor to dimensionally reduce the time series measurements to generate a set of reduced measurement scores in a multi-dimensional measurement space and determine an end member in the multi-dimensional measurement space based on the set of reduced measurement scores, wherein the end member comprises a position in the multi-dimensional measurement space that corresponds with a predetermined fluid concentration. The processor also determines the contamination level of the formation fluid at a time point based the set of reduced measurement scores and the end member.
    Type: Application
    Filed: August 3, 2021
    Publication date: December 2, 2021
    Inventors: Bin Dai, Dingding Chen, Christopher Michael Jones
  • Patent number: 11156741
    Abstract: Improved systematic inversion methodology applied to formation testing data interpretation with spherical, radial and/or cylindrical flow models is disclosed. A method of determining a parameter of a formation of interest at a desired location comprises directing a formation tester to the desired location in the formation of interest and obtaining data from the desired location in the formation of interest. The obtained data relates to a first parameter at the desired location of the formation of interest. The obtained data is regressed to determine a second parameter at the desired location of the formation of interest. Regressing the obtained data comprises using a method selected from a group consisting of a deterministic approach, a probabilistic approach, and an evolutionary approach.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 26, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Mark A. Proett, Li Gao, Christopher Michael Jones
  • Publication number: 20210326721
    Abstract: Aspects of the present disclosure relate to earth modeling using machine learning. A method includes receiving detected data at a first depth point along a wellbore, providing at least a first subset of the detected data as first input values to a machine learning model, and receiving first output values from the machine learning model based on the first input values. The method includes receiving additional detected data at a second depth point along the wellbore, providing at least a second subset of the additional detected data as second input values to the machine learning model, and receiving second output values from the machine learning model based on the second input values. The method includes combining the first output values at the first depth point and the second output values at the second depth point to generate an updated model of the wellbore, the updated model comprising an earth model.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Inventors: Barry F. ZHANG, Orlando De JESUS, Tuna Altay SANSAL, Dingding CHEN, Edward TIAN, Muhlis UNALDI
  • Patent number: 11118451
    Abstract: A system to determine a contamination level of a formation fluid, the system including a formation tester tool to be positioned in a borehole, wherein the borehole has a mixture of the formation fluid and a drilling fluid and the formation tester tool includes a sensor to detect time series measurements from a plurality of sensor channels. The system includes a processor to dimensionally reduce the time series measurements to generate a set of reduced measurement scores in a multi-dimensional measurement space and determine an end member in the multi-dimensional measurement space based on the set of reduced measurement scores, wherein the end member comprises a position in the multi-dimensional measurement space that corresponds with a predetermined fluid concentration. The processor also determines the contamination level of the formation fluid at a time point based the set of reduced measurement scores and the end member.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 14, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Dingding Chen, Christopher Michael Jones
  • Publication number: 20210239000
    Abstract: A method may comprise positioning a downhole fluid sampling tool into a wellbore, performing a pressure test operation within the wellbore, performing a pumpout operation within the wellbore, identifying when a clean fluid sample may be taken by the downhole fluid sampling tool from at least the pressure test operation and the pumpout operation, and acquiring the clean fluid sample from the wellbore. A system may comprise a downhole fluid sampling tool and an information handling machine. The downhole fluid sampling tool may further comprise one or more probes attached to the downhole fluid sampling tool, one or more stabilizers attached to the downhole fluid sampling tool, and a sensor placed in the downhole fluid sampling tool configured to measure drilling fluid filtrate.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Peter Ojo Olapade, Bin Dai, Christopher Michael Jones, James Martin Price, Dingding Chen, Anthony Herman Van Zuilekom
  • Patent number: 11021951
    Abstract: A method may comprise positioning a downhole fluid sampling tool into a wellbore, performing a pressure test operation within the wellbore, performing a pumpout operation within the wellbore, identifying when a clean fluid sample may be taken by the downhole fluid sampling tool from at least the pressure test operation and the pumpout operation, and acquiring the clean fluid sample from the wellbore. A system may comprise a downhole fluid sampling tool and an information handling machine. The downhole fluid sampling tool may further comprise one or more probes attached to the downhole fluid sampling tool, one or more stabilizers attached to the downhole fluid sampling tool, and a sensor placed in the downhole fluid sampling tool configured to measure drilling fluid filtrate.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: June 1, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Peter Ojo Olapade, Bin Dai, Christopher Michael Jones, James Martin Price, Dingding Chen, Anthony Herman Van Zuilekom
  • Publication number: 20210110246
    Abstract: Disclosed herein are examples embodiments of a progressive modeling scheme to enhance optical sensor transformation networks using both in-field sensor measurements and simulation data. In one aspect, a method includes receiving optical sensor measurements generated by one or more downhole optical sensors in a wellbore; determining synthetic data for fluid characterization using an adaptive model and the optical sensor measurements; and applying the synthetic data to determine one or more physical properties of a fluid in the wellbore for which the optical sensor measurements are received.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Dingding CHEN, Christopher Michael JONES, Bin DAI, Anthony Van ZUILEKOM
  • Patent number: 10955288
    Abstract: The disclosed embodiments include a method, apparatus, and computer program product for generating a cross-sensor standardization model. For example, one disclosed embodiment includes a system that includes at least one processor; at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations comprising selecting a representative sensor from a group of sensors comprising at least one of same primary optical elements and similar synthetic optical responses and calibrating a cross-sensor standardization model based on a matched data pair for each sensor in the group of sensors and for the representative sensor. In one embodiment, the at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations further comprises generating the matched data pair, wherein the matched data pair comprises calibration input data and calibration output data.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: March 23, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David L. Perkins
  • Publication number: 20210071522
    Abstract: A system to determine a contamination level of a formation fluid, the system including a formation tester tool to be positioned in a borehole, wherein the borehole has a mixture of the formation fluid and a drilling fluid and the formation tester tool includes a sensor to detect time series measurements from a plurality of sensor channels. The system includes a processor to dimensionally reduce the time series measurements to generate a set of reduced measurement scores in a multi-dimensional measurement space and determine an end member in the multi-dimensional measurement space based on the set of reduced measurement scores, wherein the end member comprises a position in the multi-dimensional measurement space that corresponds with a predetermined fluid concentration. The processor also determines the contamination level of the formation fluid at a time point based the set of reduced measurement scores and the end member.
    Type: Application
    Filed: December 4, 2018
    Publication date: March 11, 2021
    Inventors: Bin Dai, Dingding Chen, Christopher Michael Jones
  • Patent number: 10935684
    Abstract: Near real-time methodologies for maximizing return-on-fracturing-investment for shale fracturing. An example system can calculate, based on sonic data and density data, mechanical properties and closure stress of a portion of shale rocks for fracture modeling. The system can generate one or more rock mechanical models based on the mechanical properties and closure stress of the portion of shale rocks, and perform one or more fracture modeling simulations based on one or more treatment parameter values. Based on the one or more fracture modeling simulations, the system can generate a neural network model which predicts a fracture productivity indicator of an effective propped area (EPA) and/or an effective propped length (EPL), and calculate a return-on-fracturing-investment (ROFI) based on the EPA or EPL predicted by the neural network model.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: March 2, 2021
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Ming Gu, John Andrew Quirein, Dingding Chen
  • Publication number: 20210054738
    Abstract: A method, including disposing a probe of a sensor system in a wellbore to interact with a formation fluid that includes a mud filtrate and a clean fluid that includes one of a formation water, or a formation hydrocarbon fluid including at least one hydrocarbon component. The method includes collecting multiple measurements of a formation fluid from a wellbore, the formation fluid comprising a mud filtrate and a clean fluid, is provided. The clean fluid includes at least one hydrocarbon component, and the method also include identifying a concentration of the mud filtrate and a concentration of the clean fluid in the formation fluid for one of the measurements, and determining at least one hydrocarbon composition and at least one physical property of the clean fluid based on a measurement fingerprint of the hydrocarbon components. A sensor system configured to perform a method as above is also provided.
    Type: Application
    Filed: June 27, 2018
    Publication date: February 25, 2021
    Inventors: Bin Dai, Christopher Michael Jones, Dingding Chen
  • Patent number: 10927672
    Abstract: A system includes an optical computing device having an optical multiplexer that receives a sample light generated by an optical interaction between a sample and an illumination light is provided. The system includes sensing elements that optically interact with the sample light to generate modified lights, and a detector that measures a property of the modified lights separately. Linear and nonlinear models for processing data collected with the above system to form high-resolution spectra are also provided. Methods for designing optimal optical multiplexers for optimal reconstruction of high-resolution spectra are also provided.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: February 23, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Christopher Michael Jones, Dingding Chen, Jing Shen
  • Publication number: 20200348444
    Abstract: A method may include transforming optical responses for a fluid sample to a parameter space of a downhole tool. The optical responses are obtained using a first operational sensor and a second operational sensor of the downhole tool. Fluid models are applied in the parameter space of the downhole tool to the transformed optical responses to obtain density predictions of the fluid sample. The density predictions of the first operational sensor are matched to the density predictions of the second operational sensor based on optical parameters of the fluid models to obtain matched density predictions. A difference between the matched density predictions and measurements obtained from a densitometer is calculated, and a contamination index is estimated based on the difference.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Dingding Chen, Bin Dai, Jing Shen, Ming Gu
  • Publication number: 20200284942
    Abstract: The subject disclosure provides for a method of optical sensor calibration implemented with neural networks through machine learning to make real-time optical fluid answer product prediction adapt to optical signal variation of synthetic and actual sensor inputs integrated from multiple sources. Downhole real-time fluid analysis can be performed by monitoring the quality of the prediction with each type of input and determining which type of input generalizes better. The processor can bypass the less robust routine and deploy the more robust routine for remainder of the data prediction. Operational sensor data can be incorporated from a particular optical tool over multiple field jobs into an updated calibration when target fluid sample compositions and properties become available.
    Type: Application
    Filed: July 16, 2018
    Publication date: September 10, 2020
    Inventors: Dingding Chen, Christopher Michael Jones, Bin Dai, Megan Pearl, James M. Price