Patents by Inventor Dinh Dang

Dinh Dang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200392526
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: April 28, 2020
    Publication date: December 17, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 10851383
    Abstract: The present invention is directed to promoter sequences and promoter control elements, polynucleotide constructs comprising the promoters and control elements, and methods of identifying the promoters, control elements, or fragments thereof. The invention further relates to the use of the present promoters or promoter control elements to modulate transcript levels.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 1, 2020
    Assignee: Ceres, Inc.
    Inventors: Zhihong Cook, Yiwen Fang, Kenneth A. Feldmann, Edward Kiegle, Shing Kwok, Yu-Ping Lu, Leonard Medrano, Roger Pennell, Richard Schneeberger, Chuan-Yin Wu, Nestor Apuya, Jack K. Okamuro, Diane K. Jofuku, Jonathan Donson, David Van-Dinh Dang, Emilio Margolles-Clark, Nickolai Alexandrov, Tatiana Tatarinova, Noah Theiss, Danielle Grizard, Shawna Davis, Dennis Robles, Michael Portereiko
  • Patent number: 10826364
    Abstract: Certain aspects relate to a continuous winding formed from a conductor of rectangular cross-section, the winding having a compound bend in the crowns connecting successive linear segments where the compound bend does not stress the conductor insulation to its failure point. The compound bend can be formed by applying force to the conductor in a first direction, thereby shaping a first bend in the conductor to form a u-shaped conductor having a crown and two linear segments, where the crown includes a v-shaped bend and two straight segments on either side of the v-shaped bend that each connect to one of the linear segments. A second bend can be formed by applying force to the conductor in a second direction perpendicular to the first direction. The shape of the second bend can depend on the desired radius of the winding when circularly wound and positioned in a stator.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: November 3, 2020
    Assignee: Faraday & Future Inc.
    Inventors: Erik Hatch, Dang Dinh Dang
  • Patent number: 10815494
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased[RCL2] low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 27, 2020
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Publication number: 20200299714
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: April 28, 2020
    Publication date: September 24, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 10693335
    Abstract: Certain aspects relate to systems and methods to join leads of stator windings to components of an electric machine, such as a bus bar of a stator of the electric machine. Systems and methods include modifying a surface of the lead and laser welding the surface-modified lead to the bus bar. Systems and methods can include reducing the reflectivity of the lead by imparting a non-smooth surface on the lead, thereby allowing a laser to deliver concentrated energy onto the lead. The surface-modified lead can include knurled surface, a pattern of raised grooves stamped into the surface of the lead, or a roughened surface.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: June 23, 2020
    Assignee: Faraday & Future Inc.
    Inventor: Dang Dinh Dang
  • Publication number: 20200181635
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: January 28, 2020
    Publication date: June 11, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Publication number: 20200140881
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: December 26, 2019
    Publication date: May 7, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Publication number: 20200056199
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: August 28, 2019
    Publication date: February 20, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Publication number: 20200048653
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: August 26, 2019
    Publication date: February 13, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Patent number: 10512898
    Abstract: Provided are automotive catalyst composites having a catalytic material on a carrier, wherein the catalytic material comprises at least two layers. The first layer is deposited directly on the carrier and comprises a first palladium component supported on a first refractory metal oxide component, a first oxygen storage component, or a combination thereof. The second layer is deposited on top of the first layer and comprises a rhodium component supported on a second refractory metal oxide component and a second palladium component supported on a second oxygen storage component, a third refractory metal oxide component or a combination thereof. Generally these catalyst composites are used as three-way conversion (TWC) catalysts. Methods of making and using the same are also provided.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: December 24, 2019
    Assignee: BASF Corporation
    Inventors: Michel Deeba, Yipeng Sun, Tian Luo, Emi Leung, Pavel Ruvinskiy, Dinh Dang
  • Patent number: 10505423
    Abstract: Certain aspects relate to a bus bar unit for providing three phases of electric current to the windings of the stator of an electric machine while structured to have a compact footprint for fitting within the enclosure of the electric machine. Each winding can have a phase lead end and a neutral end extending above one face of the stator. The bus bar unit can include three phase lead bus bars and a neutral bus bar each having a planar branch with legs extending from the planar branch, each leg having a slot at an end thereof for electrically coupling with either the phase lead or the neutral end of one or more of the windings. The planar branches can be stacked such that they overlap from a top-down perspective but are spaced apart from a side perspective.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 10, 2019
    Assignee: FARADAY & FUTURE INC.
    Inventor: Dang Dinh Dang
  • Patent number: 10428344
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 1, 2019
    Assignee: CERES, INC.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Patent number: 10326326
    Abstract: Certain aspects relate to designs for an interior permanent magnet (IPM) electrical machine stator having a plurality of continuous windings wound through the stator. Compared to existing designs, the disclosed stator design has an increased number of parallel conductors, an increased number of conductors per slot, increased tooth and slot width and number, and more compacted conductors, resulting in reduction in core losses, reduction in conductor losses, reduced harmonics in flux density, and improved winding reliability.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 18, 2019
    Assignee: FARADAY & FUTURE INC.
    Inventors: Omar Abdul Rahman Laldin, Dang Dinh Dang
  • Publication number: 20190093123
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: October 2, 2018
    Publication date: March 28, 2019
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 10138492
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 27, 2018
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 10132854
    Abstract: Systems and methods to evaluate insulation-covered stator wire are disclosed. The stator wire includes a conductor having a plurality of bent segments connected by a plurality of unbent segments, and an electrically insulating coating applied to portions of the segments. Systems and methods include translating an electrically conductive brush over one or more of the plurality of bent segments of the stator wire. Systems and methods include measuring a change in electrical current between the electrically conductive brush and an uninsulated end of the conductor when the electrically conductive brush contacts the conductor in a portion of the one or more plurality of bent segments comprising a defect in the electrically insulating coating.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: November 20, 2018
    Assignee: FARADAY & FUTURE INC.
    Inventor: Dang Dinh Dang
  • Publication number: 20180312836
    Abstract: The present invention is directed to promoter sequences and promoter control elements, polynucleotide constructs comprising the promoters and control elements, and methods of identifying the promoters, control elements, or fragments thereof. The invention further relates to the use of the present promoters or promoter control elements to modulate transcript levels.
    Type: Application
    Filed: April 30, 2018
    Publication date: November 1, 2018
    Inventors: Zhihong Cook, Yiwen Fang, Kenneth A. Feldmann, Edward Kiegle, Shing Kwok, Yu-Ping Lu, Leonard Medrano, Roger Pennell, Richard Schneeberger, Chuan-Yin Wu, Nestor Apuya, Jack K. Okamuro, Diane K. Jofuku, Jonathan Donson, David Van-Dinh Dang, Emilio Margolles-Clark, Nickolai Alexandrov, Tatiana Tatarinova, Noah Theiss, Danielle Grizard, Shawna Davis, Dennis Robles, Michael Portereiko
  • Publication number: 20180178198
    Abstract: Provided are automotive catalyst composites having a catalytic material on a carrier, wherein the catalytic material comprises at least two layers. The first layer is deposited directly on the carrier and comprises a first palladium component supported on a first refractory metal oxide component, a first oxygen storage component, or a combination thereof. The second layer is deposited on top of the first layer and comprises a rhodium component supported on a second refractory metal oxide component and a second palladium component supported on a second oxygen storage component, a third refractory metal oxide component or a combination thereof. Generally these catalyst composites are used as three-way conversion (TWC) catalysts. Methods of making and using the same are also provided.
    Type: Application
    Filed: June 24, 2015
    Publication date: June 28, 2018
    Inventors: Michel Deeba, Yipeng Sun, Tian Luo, Emi Leung, Pavel Ruvinskiy, Dinh Dang
  • Publication number: 20180112229
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 26, 2018
    Inventors: Gregory Nadzan, Richard Schnebberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann