Patents by Inventor Dirk Beque

Dirk Beque has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170365047
    Abstract: The system and method of the invention pertains to automated analysis and reconstruction of images from a plurality of imaging devices to determine the presence of different types of artifacts, using signal processing and machine learning algorithms. The method (1) classifies the artifacts according to their cause, (2) selects correction algorithms to address the artifact, or artifact-generating data, and (3) selects the data or sections of the data and/or reconstruction parameters to be corrected. Then, another reconstruction is performed with the selected artifact corrections, yielding a second reconstructed image with less artifact content. The process can be applied iteratively until the artifact content of the reconstructed image is reduced to a satisfactory low level as determined by a user. If the artifacts cannot be addressed by data processing means, the method initiates or recommends alternative artifact management actions.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 21, 2017
    Inventors: Dirk Bequé, Florian Wiesinger
  • Patent number: 9805481
    Abstract: Reconstructing under-sampled PCT data includes obtaining under-sampled scan data of a subject-under-test, the object scan performed on a phase contrast computed tomography (PCT) system, performing a regularized Fourier analysis on the under-sampled scan data, correcting for one or more PCT system contributions to the under-sampled scan data by dividing the computed Fourier coefficients by Fourier coefficients representative of the one or more PCT system contributions, obtaining at least one of an absorption sinogram, a differential phase sinogram, and a dark field sinogram from the corrected Fourier coefficients, and performing tomographic reconstruction on the obtained absorption sinogram, the obtained differential phase sinogram, and the obtained dark field sinogram. A system and non-transitory computer readable medium are also disclosed.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: October 31, 2017
    Assignee: General Electric Company
    Inventors: Jonathan Immanuel Sperl, Dirk Beque
  • Publication number: 20170213364
    Abstract: Reconstructing under-sampled PCT data includes obtaining under-sampled scan data of a subject-under-test, the object scan performed on a phase contrast computed tomography (PCT) system, performing a regularized Fourier analysis on the under-sampled scan data, correcting for one or more PCT system contributions to the under-sampled scan data by dividing the computed Fourier coefficients by Fourier coefficients representative of the one or more PCT system contributions, obtaining at least one of an absorption sinogram, a differential phase sinogram, and a dark field sinogram from the corrected Fourier coefficients, and performing tomographic reconstruction on the obtained absorption sinogram, the obtained differential phase sinogram, and the obtained dark field sinogram. A system and non-transitory computer readable medium are also disclosed.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 27, 2017
    Inventors: Jonathan Immanuel SPERL, Dirk BEQUE
  • Patent number: 9706972
    Abstract: Aspects of the invention relate to generating an emission activity image as well as an emission attenuation map using an iterative updation based on both the raw emission projection data and the raw radiography projection data, and an optimization function. The outputs include an optimized emission activity image, and at least one of an optimized emission attenuation map or an optimized radiography image. In some aspects an attenuated corrected emission activity image is obtained using the optimized emission activity image, and the optimized emission attenuation map.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: July 18, 2017
    Assignee: General Electric Company
    Inventors: Sangtae Ahn, Lishui Cheng, Florian Wiesinger, Dirk Bequé, Sandeep Suryanarayana Kaushik, Dattesh Dayanand Shanbhag
  • Patent number: 9014333
    Abstract: An image reconstruction method for differential phase contrast imaging includes receiving data corresponding to a signal produced by an X-ray detector and corresponding to X-rays that passed through a subject and a grating system to reach the X-ray detector. The method also includes performing a fringe analysis on the received data. The fringe analysis includes a non-integer fringe fraction correction utilizing one or more adapted basis functions in the Fourier domain to determine one or more Fourier coefficients. A differential phase image of the subject is generated by utilizing the one or more Fourier coefficients.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: April 21, 2015
    Assignee: General Electric Company
    Inventors: Jonathan Immanuel Sperl, Dirk Beque
  • Publication number: 20140185757
    Abstract: An image reconstruction method for differential phase contrast imaging includes receiving data corresponding to a signal produced by an X-ray detector and corresponding to X-rays that passed through a subject and a grating system to reach the X-ray detector. The method also includes performing a fringe analysis on the received data. The fringe analysis includes a non-integer fringe fraction correction utilizing one or more adapted basis functions in the Fourier domain to determine one or more Fourier coefficients. A differential phase image of the subject is generated by utilizing the one or more Fourier coefficients.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: General Electric Company
    Inventors: Jonathan Immanuel Sperl, Dirk Beque
  • Patent number: 7428292
    Abstract: A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned. A plurality of x-ray emission sources are attached to the rotatable gantry, each x-ray emission source configured to emit x-rays in a conebeam toward the object. The CT imaging system also includes a plurality of x-ray detector arrays attached to the gantry and positioned to receive x-rays passing through the object. At least one x-ray detector array of the plurality of x-ray detector arrays is configured to receive x-rays from more than one x-ray emission source.
    Type: Grant
    Filed: November 24, 2006
    Date of Patent: September 23, 2008
    Assignee: General Electric Company
    Inventors: Bruno K. B. De Man, Colin R. Wilson, Bernhard Claus, Maria Iatrou, James W. LeBlanc, Dirk Bequé, Samit Kumar Basu, Mark Vermilyea, Zhye Yin
  • Publication number: 20080123803
    Abstract: A CT imaging system includes a rotatable gantry having an opening to receive an object to be scanned. A plurality of x-ray emission sources are attached to the rotatable gantry, each x-ray emission source configured to emit x-rays in a conebeam toward the object. The CT imaging system also includes a plurality of x-ray detector arrays attached to the gantry and positioned to receive x-rays passing through the object. At least one x-ray detector array of the plurality of x-ray detector arrays is configured to receive x-rays from more than one x-ray emission source.
    Type: Application
    Filed: November 24, 2006
    Publication date: May 29, 2008
    Inventors: Bruno K.B. De Man, Colin R. Wilson, Bernhard Claus, Maria Iatrou, James W. LeBlanc, Dirk Beque, Samit Kumar Basu, Mark Vermilyea, Zhye Yin